Urban flooding disrupts traffic networks, affecting mobility and disrupting residents’ access. Flooding events are predicted to increase due to climate change; therefore, understanding traffic network’s flood-caused disruption is critical to improving emergency planning and city resilience. This study reveals the anatomy of perturbed traffic networks by leveraging high-resolution traffic network data from a major flood event and advanced high-order network analysis. We evaluate travel times between every pairwise junction in the city and assess higher-order network geometry changes in the network to determine flood impacts. The findings show network-wide persistent increased travel times could last for weeks after the flood water has receded, even after modest flood failure. A modest flooding of 1.3% road segments caused 8% temporal expansion of the entire traffic network. The results also show that distant trips would experience a greater percentage increase in travel time. Also, the extent of the increase in travel time does not decay with distance from inundated areas, suggesting that the spatial reach of flood impacts extends beyond flooded areas. The findings of this study provide an important novel understanding of floods’ impacts on the functioning of traffic networks in terms of travel time and traffic network geometry.
more »
« less
Latent sub-structural resilience mechanisms in temporal human mobility networks during urban flooding
Abstract In studying resilience in temporal human networks, relying solely on global network measures would be inadequate; latent sub-structural network mechanisms need to be examined to determine the extent of impact and recovery of these networks during perturbations, such as urban flooding. In this study, we utilize high-resolution aggregated location-based data to construct temporal human mobility networks in Houston in the context of the 2017 Hurricane Harvey. We examine motif distribution, motif persistence, temporal stability, and motif attributes to reveal latent sub-structural mechanisms related to the resilience of human mobility networks during disaster-induced perturbations. The results show that urban flood impacts persist in human mobility networks at the sub-structure level for several weeks. The impact extent and recovery duration are heterogeneous across different network types. Also, while perturbation impacts persist at the sub-structure level, global topological network properties indicate that the network has recovered. The findings highlight the importance of examining the microstructures and their dynamic processes and attributes in understanding the resilience of temporal human mobility networks (and other temporal networks). The findings can also provide disaster managers, public officials, and transportation planners with insights to better evaluate impacts and monitor recovery in affected communities.
more »
« less
- Award ID(s):
- 1832662
- PAR ID:
- 10481364
- Publisher / Repository:
- Nature Scientific Report
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unplanned disaster events can greatly disrupt access to essential resources, with calamitous outcomes for already vulnerable households. This is particularly challenging when concurrent extreme events affect both the ability of households to travel and the functioning of traditional transportation networks that supply resources. This paper examines the use of volunteer-based crowdsourced food delivery as a community resilience tactic to improve food accessibility during overlapping disruptions with lasting effects, such as the COVID-19 pandemic and climate disasters. The study uses large-scale spatio-temporal data (n = 28,512) on crowdsourced food deliveries in Houston, TX, spanning from 2020 through 2022, merged with data on community demographics and significant disruptive events occurring in the two-year timespan. Three research lenses are applied to understand the effectiveness of crowdsourced food delivery programs for food access recovery: 1) geographic analysis illustrates hot spots of demand and impacts of disasters on requests for food assistance within the study area; 2) linear spatio-temporal modeling identifies a distinction between shelter-in-place emergencies and evacuation emergencies regarding demand for food assistance; 3) structural equation modeling identifies socially vulnerable identity clusters that impact requests for food assistance. The findings from the study suggest that volunteerbased crowdsourced food delivery adds to the resilience of food insecure communities, supporting its effectiveness in serving its intended populations. The paper contributes to the literature by illustrating how resilience is a function of time and space, and that similarly, there is value in a dynamic representation of community vulnerability. The results point to a new approach to resource recovery following disaster events by shifting the burden of transportation from resource-seekers and traditional transportation systems to home delivery by a crowdsourced volunteer network.more » « less
-
null (Ed.)Abstract In recent years, extreme shocks, such as natural disasters, are increasing in both frequency and intensity, causing significant economic loss to many cities around the world. Quantifying the economic cost of local businesses after extreme shocks is important for post-disaster assessment and pre-disaster planning. Conventionally, surveys have been the primary source of data used to quantify damages inflicted on businesses by disasters. However, surveys often suffer from high cost and long time for implementation, spatio-temporal sparsity in observations, and limitations in scalability. Recently, large scale human mobility data (e.g. mobile phone GPS) have been used to observe and analyze human mobility patterns in an unprecedented spatio-temporal granularity and scale. In this work, we use location data collected from mobile phones to estimate and analyze the causal impact of hurricanes on business performance. To quantify the causal impact of the disaster, we use a Bayesian structural time series model to predict the counterfactual performances of affected businesses ( what if the disaster did not occur? ), which may use performances of other businesses outside the disaster areas as covariates. The method is tested to quantify the resilience of 635 businesses across 9 categories in Puerto Rico after Hurricane Maria. Furthermore, hierarchical Bayesian models are used to reveal the effect of business characteristics such as location and category on the long-term resilience of businesses. The study presents a novel and more efficient method to quantify business resilience, which could assist policy makers in disaster preparation and relief processes.more » « less
-
The ability to proactively monitor the trajectory of post-disaster recovery is valuable for resource allocation prioritization. Existing knowledge, however, lacks models and insights for quantifying and proactively monitoring post-disaster community recovery. This study examines models that could predict population activity recovery at the scale of the census block group (CBG). Population activity recovery is measured by using location-based human mobility visitation patterns to essential points-of-interest (POIs) in the context of the 2017 Hurricane Harvey in Harris County, Texas. The study examined the association between the population activity recovery duration and 32 features split into four categories: (1) physical vulnerability and access, (2) hazard exposure and impact, (3) proactive actions and (4) population features. Several types of spatial regression models were evaluated to determine their ability to capture this relationship. The Spatial Durbin Model was identified as the best fit for assessing direct, spillover, and total effects of features on population activity recovery at the CBG level. The results show the extent of physical vulnerability, measured by road network density, prolongs the duration of population activity recovery by a combination of direct and spillover effects. Also, the extent of access to essential facilities, measured based on the number of POIs, shortens the duration of population activity recovery. Correspondingly, the extent of flooding is not a significant feature in explaining the population recovery duration in CBGs. The results show that better preparedness, measured by extent of POIs visitations prior to hurricane landing, is associated with faster population activity recovery. In terms of population attributes, the total number of people, the percentage of minorities, and the percentage of Black and Asian subpopulations are significant features in the model for predicting the duration of population activity recovery. The study outcome offers data-driven insights for understanding the determinants of population activity recovery and provides a new model tool for predictive recovery monitoring based on evaluating the direct, spillover, and total effects of features. These findings can identify areas with slower or more rapid recovery to inform emergency managers and public officials in ensuring equitable resource allocation prioritization.more » « less
-
Climate change and natural hazards pose great threats to road transport systems which are ‘lifelines’ of human society. However, there is generally a lack of empirical data and approaches for assessing resilience of road networks in real hazard events. This study introduces an empirical approach to evaluate road network resilience using crowdsourced traffic data in Google Maps. Based on the conceptualization of resilience and the Hansen accessibility index, resilience of road network is measured from accumulated accessibility reduction over time during a hazard. The utility of this approach is demonstrated in a case study of the Cleveland metropolitan area (Ohio) in Winter Storm Harper. The results reveal strong spatial variations of the disturbance and recovery rate of road network performance during the hazard. The major findings of the case study are: (1) longer distance travels have higher increasing ratios of travel time during the hazard; (2) communities with low accessibility at the normal condition have lower road network resilience; (3) spatial clusters of low resilience are identified, including communities with low socio-economic capacities. The introduced approach provides ground-truth validation for existing quantitative models and supports disaster management and transportation planning to reduce hazard impacts on road network.more » « less
An official website of the United States government

