skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Precomputed Topological Relations for Integrated Geospatial Analysis Across Knowledge Graphs
Geospatial Knowledge Graphs (GeoKGs) represent a significant advancement in the integration of AI-driven geographic information, facilitating interoperable and semantically rich geospatial analytics across various domains. This paper explores the use of topologically enriched GeoKGs, built on an explicit representation of S2 Geometry alongside precomputed topological relations, for constructing efficient geospatial analysis workflows within and across knowledge graphs (KGs). \r\nUsing the SAWGraph knowledge graph as a case study focused on enviromental contamination by PFAS, we demonstrate how this framework supports fundamental GIS operations - such as spatial filtering, proximity analysis, overlay operations and network analysis - in a GeoKG setting while allowing for the easy linking of these operations with one another and with semantic filters. This enables the efficient execution of complex geospatial analyses as semantically-explicit queries and enhances the usability of geospatial data across graphs. Additionally, the framework eliminates the need for explicit support for GeoSPARQL’s topological operations in the utilized graph databases and better integrates spatial knowledge into the overall semantic inference process supported by RDFS and OWL ontologies.  more » « less
Award ID(s):
2333782
PAR ID:
10640764
Author(s) / Creator(s):
; ; ;
Editor(s):
Sila-Nowicka, Katarzyna; Moore, Antoni; O'Sullivan, David; Adams, Benjamin; Gahegan, Mark
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Edition / Version:
1
Volume:
346
ISSN:
1868-8969
Page Range / eLocation ID:
4:1-4:22
Subject(s) / Keyword(s):
knowledge graph GeoKG spatial analysis ontology SPARQL GeoSPARQL discrete global grid system S2 geometry GeoAI PFAS Computing methodologies → Spatial and physical reasoning Computing methodologies → Ontology engineering
Format(s):
Medium: X Size: 22 pages; 2995776 bytes Other: application/pdf
Size(s):
22 pages 2995776 bytes
Location:
13th International Conference on Geographic Information Science (GIScience 2025), Christchurch, New Zealand, Aug. 2025
Sponsoring Org:
National Science Foundation
More Like this
  1. The integration of quantum computing with knowledge graphs presents a transformative approach to intelligent information processing that enables enhanced reasoning, semantic understanding, and large-scale data inference. This study introduces a Quantum Knowledge Graph (QKG) framework that combines Neo4j’s LLM Knowledge Graph Builder with Quantum Natural Language Processing (QNLP) to improve the representation, retrieval, and inference of complex knowledge structures. The proposed methodology involves extracting structured relationships from unstructured text, converting them into quantum-compatible representations using Lambeq, and executing quantum circuits via Qiskit to compute quantum embeddings. Using superposition and entanglement, the QKG framework enables parallel relationship processing, contextual entity disambiguation, and more efficient semantic association. These enhancements address the limitations of classical knowledge graphs, such as deterministic representations, scalability constraints, and inefficiencies in the capture of complex relationships. This research highlights the importance of integrating quantum computing with knowledge graphs, offering a scalable, adaptive, and semantically enriched approach to intelligent data processing. 
    more » « less
  2. As the need for more broad-scale solutions to environmental problems is increasingly recognized, traditional hierarchical, government-led models of coordination are being supplemented by or transformed into more collaborative inter-organizational networks (i.e., collaboratives, coalitions, partnerships). As diffuse networks, such regional environmental planning and design (REPD) efforts often face challenges in sharing and using spatial and other types of information. Recent advances in semantic knowledge management technologies, such as knowledge graphs, have the potential to address these challenges. In this paper, we first describe the information needs of three multi-stakeholder REPD initiatives in the western USA using a list of 80 need-to-know questions and concerns. The top needs expressed were for help in tracking the participants, institutions, and information products relevant to the REDP’s focus. To address these needs, we developed a prototype knowledge graph based on RDF and GeoSPARQL standards. This semantic approach provided a more flexible data structure than traditional relational databases and also functionality to query information across different providers; however, the lack of semantic data expertise, the complexity of existing software solutions, and limited online hosting options are significant barriers to adoption. These same barriers are more acute for geospatial data, which also faces the added challenge of maintaining and synchronizing both semantic and traditional geospatial datastores. 
    more » « less
  3. Abstract. Many geoportals such as ArcGIS Online are established with the goal of improving geospatial data reusability and achieving intelligent knowledge discovery. However, according to previous research, most of the existing geoportals adopt Lucene-based techniques to achieve their core search functionality, which has a limited ability to capture the user’s search intentions. To better understand a user’s search intention, query expansion can be used to enrich the user’s query by adding semantically similar terms. In the context of geoportals and geographic information retrieval, we advocate the idea of semantically enriching a user’s query from both geospatial and thematic perspectives. In the geospatial aspect, we propose to enrich a query by using both place partonomy and distance decay. In terms of the thematic aspect, concept expansion and embedding-based document similarity are used to infer the implicit information hidden in a user’s query. This semantic query expansion framework is implemented as a semantically-enriched search engine using ArcGIS Online as a case study. A benchmark dataset is constructed to evaluate the proposed framework. Our evaluation results show that the proposed semantic query expansion framework is very effective in capturing a user’s search intention and significantly outperforms a well-established baseline – Lucene’s practical scoring function – with more than 3.0 increments in DCG@K (K=3,5,10). 
    more » « less
  4. Graphs are powerful representations for relations among objects, which have attracted plenty of attention in both academia and industry. A fundamental challenge for graph learning is how to train an effective Graph Neural Network (GNN) encoder without labels, which are expensive and time consuming to obtain. Contrastive Learning (CL) is one of the most popular paradigms to address this challenge, which trains GNNs by discriminating positive and negative node pairs. Despite the success of recent CL methods, there are still two under-explored problems. Firstly, how to reduce the semantic error introduced by random topology based data augmentations. Traditional CL defines positive and negative node pairs via the node-level topological proximity, which is solely based on the graph topology regardless of the semantic information of node attributes, and thus some semantically similar nodes could be wrongly treated as negative pairs. Secondly, how to effectively model the multiplexity of the real-world graphs, where nodes are connected by various relations and each relation could form a homogeneous graph layer. To solve these problems, we propose a novel multiplex heterogeneous graph prototypical contrastive leaning (X-GOAL) framework to extract node embeddings. X-GOAL is comprised of two components: the GOAL framework, which learns node embeddings for each homogeneous graph layer, and an alignment regularization, which jointly models different layers by aligning layer-specific node embeddings. Specifically, the GOAL framework captures the node-level information by a succinct graph transformation technique, and captures the cluster-level information by pulling nodes within the same semantic cluster closer in the embedding space. The alignment regularization aligns embeddings across layers at both node level and cluster level. We evaluate the proposed X-GOAL on a variety of real-world datasets and downstream tasks to demonstrate the effectiveness of the X-GOAL framework. 
    more » « less
  5. Synthesizing information from collections of tables embedded within scientific and technical documents is increasingly critical to emerging knowledge-driven applications. Given their structural heterogeneity, highly domain-specific content, and diffuse context, inferring a precise semantic understanding of such tables is traditionally better accomplished through linking tabular content to concepts and entities in reference knowledge graphs. However, existing tabular data discovery systems are not designed to adequately exploit these explicit, human-interpretable semantic linkages. Moreover, given the prevalence of misinformation, the level of confidence in the reliability of tabular information has become an important, often overlooked, factor in the discovery over open datasets. We describe a preliminary implementation of a discovery engine that enables table-based semantic search and retrieval of tabular information from a linked knowledge graph of scientific tables. We discuss the viability of semantics-guided tabular data analysis operations, including on-the-fly table generation under reliability constraints, within discovery scenarios motivated by intelligence production from documents. 
    more » « less