Piezoelectric mass sensors have been widely studied for a variety of applications as a biological or chemical sensing transducer. With an increasing range of application areas and performance requirements for fast measurement time, higher resolution and accuracy, and compact system size, different measurement electronic systems have also been investigated to fulfill the performance requirements. Selecting a proper type of measurement electronics is critical to develop an optimized sensing system for practical applications. In this review, we cover different types of measurement electronics configurations including impedance-based measurement, oscillator-based measurement, and ring-down technique. Also, we provide an overview of the recent advances of each measurement electronics configuration for piezoelectric resonator sensors. Finally, the pros and cons of each measurement electronic configuration are compared and discussed.
more »
« less
Passive Dosimeters for Radiation Dosimetry: Materials, Mechanisms, and Applications
Abstract Passive dosimeters enabling accurate measurement of doses from gamma rays to visible light are necessary to ensure efficient utilization of electromagnetic radiation in numerous fields like medical diagnostics and industrial manufacturing. The specific requirements for dosimeters in terms of dosimetry range, sensitivity, accuracy, and stability for each application have led to the development of various dosimeters based on new materials and new mechanisms. Here, a comprehensive review of different types of dosimeters classified according to the response signal, namely electron paramagnetic resonance, electrical, and optical, is provided. This review starts with a general introduction to dosimetry, a classification of dosimeters, and an elucidation of the necessity of dosimeters in various ranges of the electromagnetic spectrum. This is followed by an overview of the fundamental requirements of dosimeters, an explanation of the general dosimetry procedure, and the dosimetric quantities. Emphasis is given to the working mechanism, the design concept, and applications of each type of dosimeter as well as their respective strengths and drawbacks. Challenges and prospects are presented at the end of the review. This review provides an insightful overview of the material‐mechanism‐characteristics‐application relationship of different types of dosimeters that hopefully can serve as inspiration for the development of new devices.
more »
« less
- Award ID(s):
- 1653016
- PAR ID:
- 10640803
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 41
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Damage mechanism identification has scientific and practical ramifications for the structural health monitoring, design, and application of composite systems. Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional spaces for a comprehensive understanding of damage evolution. This review evaluates the state of the field, beginning with a physics-based understanding of acoustic emission waveform feature extraction, followed by a detailed overview of waveform clustering, labeling, and error analysis strategies. Fundamental requirements for damage mechanism identification in any machine learning framework, including those currently in use, under development, and yet to be explored, are discussed.more » « less
-
The rapid development and large body of literature on machine learning potentials (MLPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLPs. This review paper covers a broad range of topics related to MLPs, including (i) central aspects of how and why MLPs are enablers of many exciting advancements in molecular modeling, (ii) the main underpinnings of different types of MLPs, including their basic structure and formalism, (iii) the potentially transformative impact of universal MLPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLPs, (iv) a practical guide for estimating and understanding the execution speed of MLPs, including guidance for users based on hardware availability, type of MLP used, and prospective simulation size and time, (v) a manual for what MLP a user should choose for a given application by considering hardware resources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key limitations of present MLPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems, and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of MLPs over the next 3-10+ years.more » « less
-
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLIPs. This review paper covers a broad range of topics related to MLIPs, including (i) central aspects of how and why MLIPs are enablers of many exciting advancements in molecular modeling, (ii) the main underpinnings of different types of MLIPs, including their basic structure and formalism, (iii) the potentially transformative impact of universal MLIPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLIPs, (iv) a practical guide for estimating and understanding the execution speed of MLIPs, including guidance for users based on hardware availability, type of MLIP used, and prospective simulation size and time, (v) a manual for what MLIP a user should choose for a given application by considering hardware resources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLIP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key limitations of present MLIPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems, and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of MLIPs over the next 3–10+ years.more » « less
-
As distributed applications become increasingly complex, so do their scheduling requirements. This development calls for cluster schedulers that are not only general, but also evolvable. Unfortunately, most existing cluster schedulers are not evolvable: when confronted with new requirements, they need major rewrites to support these requirements. Examples include gang-scheduling support in Kubernetes [6, 39] or task-affinity in Spark [39]. Some cluster schedulers [14, 30] expose physical resources to applications to address this. While these approaches are evolvable, they push the burden of implementing scheduling mechanisms in addition to the policies entirely to the application. ESCHER is a cluster scheduler design that achieves both evolvability and application-level simplicity. ESCHER uses an abstraction exposed by several recent frameworks (which we call ephemeral resources) that lets the application express scheduling constraints as resource requirements. These requirements are then satisfied by a simple mechanism matching resource demands to available resources. We implement ESCHER on Kubernetes and Ray, and show that this abstraction can be used to express common policies offered by monolithic schedulers while allowing applications to easily create new custom policies hitherto unsupported.more » « less
An official website of the United States government
