skip to main content


Title: ESCHER: expressive scheduling with ephemeral resources
As distributed applications become increasingly complex, so do their scheduling requirements. This development calls for cluster schedulers that are not only general, but also evolvable. Unfortunately, most existing cluster schedulers are not evolvable: when confronted with new requirements, they need major rewrites to support these requirements. Examples include gang-scheduling support in Kubernetes [6, 39] or task-affinity in Spark [39]. Some cluster schedulers [14, 30] expose physical resources to applications to address this. While these approaches are evolvable, they push the burden of implementing scheduling mechanisms in addition to the policies entirely to the application. ESCHER is a cluster scheduler design that achieves both evolvability and application-level simplicity. ESCHER uses an abstraction exposed by several recent frameworks (which we call ephemeral resources) that lets the application express scheduling constraints as resource requirements. These requirements are then satisfied by a simple mechanism matching resource demands to available resources. We implement ESCHER on Kubernetes and Ray, and show that this abstraction can be used to express common policies offered by monolithic schedulers while allowing applications to easily create new custom policies hitherto unsupported.  more » « less
Award ID(s):
1730628
NSF-PAR ID:
10399382
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
SoCC '22: Proceedings of the 13th Symposium on Cloud Computing
Page Range / eLocation ID:
47 to 62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Concurrent kernel execution on GPU has proven an effective technique to improve system throughput by maximizing the resource utilization. In order to increase programmability and meet the increasing memory requirements of data-intensive applications, current GPUs support Unified Virtual Memory (UVM), which provides a virtual memory abstraction with demand paging. By allowing applications to oversubscribe GPU memory, UVM provides increased opportunities to share GPU resources across applications. However, in the presence of applications with competing memory requirements, GPU sharing can lead to performance degradation due to thrashing. NVIDIA's Multiple Process Service (MPS) offers the capability to space share bare metal GPUs, thereby enabling cluster workload managers, such as Slurm, to share a single GPU across MPI ranks with limited control over resource partitioning. However, it is not possible to preempt, schedule, or throttle a running GPU process through MPS. These features would enable new OS-managed scheduling policies to be implemented for GPU kernels to dynamically handle resource contention and offer consistent performance. The contribution of this paper is two-fold. We first show how memory oversubscription can impact the performance of concurrent GPU applications. Then, we propose three methods to transparently mitigate memory interference through kernel preemption and scheduling policies. To implement our policies, we develop our own runtime system (PILOT) to serve as an alternative to NVIDIA's MPS. In the presence of memory over-subscription, we noticed a dramatic improvement in the overall throughput when using our scheduling policies and runtime hints. 
    more » « less
  2. Compute heterogeneity is increasingly gaining prominence in modern datacenters due to the addition of accelerators like GPUs and FPGAs. We observe that datacenter schedulers are agnostic of these emerging accelerators, especially their resource utilization footprints, and thus, not well equipped to dynamically provision them based on the application needs. We observe that the state-of-the-art datacenter schedulers fail to provide fine-grained resource guarantees for latency-sensitive tasks that are GPU-bound. Specifically for GPUs, this results in resource fragmentation and interference leading to poor utilization of allocated GPU resources. Furthermore, GPUs exhibit highly linear energy efficiency with respect to utilization and hence proactive management of these resources is essential to keep the operational costs low while ensuring the end-to-end Quality of Service (QoS) in case of user-facing queries.Towards addressing the GPU orchestration problem, we build Knots, a GPU-aware resource orchestration layer and integrate it with the Kubernetes container orchestrator to build Kube- Knots. Kube-Knots can dynamically harvest spare compute cycles through dynamic container orchestration enabling co-location of latency-critical and batch workloads together while improving the overall resource utilization. We design and evaluate two GPU-based scheduling techniques to schedule datacenter-scale workloads through Kube-Knots on a ten node GPU cluster. Our proposed Correlation Based Prediction (CBP) and Peak Prediction (PP) schemes together improves both average and 99 th percentile cluster-wide GPU utilization by up to 80% in case of HPC workloads. In addition, CBP+PP improves the average job completion times (JCT) of deep learning workloads by up to 36% when compared to state-of-the-art schedulers. This leads to 33% cluster-wide energy savings on an average for three different workloads compared to state-of-the-art GPU-agnostic schedulers. Further, the proposed PP scheduler guarantees the end-to-end QoS for latency-critical queries by reducing QoS violations by up to 53% when compared to state-of-the-art GPU schedulers. 
    more » « less
  3. The Sia1 scheduler efficiently assigns heterogeneous deep learning (DL) cluster resources to elastic resource-adaptive jobs. Although some recent schedulers address one aspect or another (e.g., heterogeneity or resource-adaptivity), none addresses all and most scale poorly to large clusters and/or heavy workloads even without the full complexity of the combined scheduling problem. Sia introduces a new scheduling formulation that can scale to the search-space sizes and intentionally match jobs and their configurations to GPU types and counts, while adapting to changes in cluster load and job mix over time. Sia also introduces a low- profiling-overhead approach to bootstrapping (for each new job) throughput models used to evaluate possible resource assignments, and it is the first cluster scheduler to support elastic scaling of hybrid parallel jobs. Extensive evaluations show that Sia outperforms state-of- the-art schedulers. For example, even on relatively small 44- to 64-GPU clusters with a mix of three GPU types, Sia reduces average job completion time ( JCT) by 30–93%, 99th percentile JCT and makespan by 28–95%, and GPU hours used by 12– 55% for workloads derived from 3 real-world environments. Additional experiments demonstrate that Sia scales to at least 2000-GPU clusters, provides improved fairness, and is not over-sensitive to scheduler parameter settings. 
    more » « less
  4. null (Ed.)
    Specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs have been increasingly deployed to train deep learning models. These accelerators exhibit heterogeneous performance behavior across model architectures. Existing schedulers for clusters of accelerators, which are used to arbitrate these expensive training resources across many users, have shown how to optimize for various multi-job, multiuser objectives, like fairness and makespan. Unfortunately, existing schedulers largely do not consider performance heterogeneity. In this paper, we propose Gavel, a heterogeneity-aware scheduler that systematically generalizes a wide range of existing scheduling policies. Gavel expresses these policies as optimization problems and then systematically transforms these problems into heterogeneity-aware versions using an abstraction we call effective throughput. Gavel then uses a round-based scheduling mechanism to ensure jobs receive their ideal allocation given the target scheduling policy. Gavel’s heterogeneity-aware policies allow a heterogeneous cluster to sustain higher input load, and improve end objectives such as makespan and average job completion time by 1.4⇥ and 3.5⇥ compared to heterogeneity-agnostic policies. 
    more » « less
  5. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The goal of this work was to design a low-cost computing facility that can support the development of an open source digital pathology corpus containing 1M images [1]. A single image from a clinical-grade digital pathology scanner can range in size from hundreds of megabytes to five gigabytes. A 1M image database requires over a petabyte (PB) of disk space. To do meaningful work in this problem space requires a significant allocation of computing resources. The improvements and expansions to our HPC (highperformance computing) cluster, known as Neuronix [2], required to support working with digital pathology fall into two broad categories: computation and storage. To handle the increased computational burden and increase job throughput, we are using Slurm [3] as our scheduler and resource manager. For storage, we have designed and implemented a multi-layer filesystem architecture to distribute a filesystem across multiple machines. These enhancements, which are entirely based on open source software, have extended the capabilities of our cluster and increased its cost-effectiveness. Slurm has numerous features that allow it to generalize to a number of different scenarios. Among the most notable is its support for GPU (graphics processing unit) scheduling. GPUs can offer a tremendous performance increase in machine learning applications [4] and Slurm’s built-in mechanisms for handling them was a key factor in making this choice. Slurm has a general resource (GRES) mechanism that can be used to configure and enable support for resources beyond the ones provided by the traditional HPC scheduler (e.g. memory, wall-clock time), and GPUs are among the GRES types that can be supported by Slurm [5]. In addition to being able to track resources, Slurm does strict enforcement of resource allocation. This becomes very important as the computational demands of the jobs increase, so that they have all the resources they need, and that they don’t take resources from other jobs. It is a common practice among GPU-enabled frameworks to query the CUDA runtime library/drivers and iterate over the list of GPUs, attempting to establish a context on all of them. Slurm is able to affect the hardware discovery process of these jobs, which enables a number of these jobs to run alongside each other, even if the GPUs are in exclusive-process mode. To store large quantities of digital pathology slides, we developed a robust, extensible distributed storage solution. We utilized a number of open source tools to create a single filesystem, which can be mounted by any machine on the network. At the lowest layer of abstraction are the hard drives, which were split into 4 60-disk chassis, using 8TB drives. To support these disks, we have two server units, each equipped with Intel Xeon CPUs and 128GB of RAM. At the filesystem level, we have implemented a multi-layer solution that: (1) connects the disks together into a single filesystem/mountpoint using the ZFS (Zettabyte File System) [6], and (2) connects filesystems on multiple machines together to form a single mountpoint using Gluster [7]. ZFS, initially developed by Sun Microsystems, provides disk-level awareness and a filesystem which takes advantage of that awareness to provide fault tolerance. At the filesystem level, ZFS protects against data corruption and the infamous RAID write-hole bug by implementing a journaling scheme (the ZFS intent log, or ZIL) and copy-on-write functionality. Each machine (1 controller + 2 disk chassis) has its own separate ZFS filesystem. Gluster, essentially a meta-filesystem, takes each of these, and provides the means to connect them together over the network and using distributed (similar to RAID 0 but without striping individual files), and mirrored (similar to RAID 1) configurations [8]. By implementing these improvements, it has been possible to expand the storage and computational power of the Neuronix cluster arbitrarily to support the most computationally-intensive endeavors by scaling horizontally. We have greatly improved the scalability of the cluster while maintaining its excellent price/performance ratio [1]. 
    more » « less