skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 4, 2025

Title: Seeds of Scanning: Exploring the Effects of Datasets, Methods, and Metrics on IPv6 Internet Scanning
Award ID(s):
2319315
PAR ID:
10640844
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400705922
Page Range / eLocation ID:
295 to 313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, there has been a growing interest in ultra-fast fMRI mapping. We are providing an optimized pulse sequence method for a 2D line-scanning technique, allowing for the detection of dynamic MRI signals with a high temporal resolution (6 ms). This work addresses an intriguing observation using MRI to directly detect neuronal activity in the brain; a topic that has been investigated by many scientists in the past few decades. This FLASH-based fMRI pulse sequence enables the ultrafast sampling of signals by reshuffling single k-space line acquisitions across multiple repetitions as a function of time for a given block design stimulation paradigm. 
    more » « less
  2. Finer resolution with greater stability is possible using unique low-power (aW), low-noise (20 dB S/N), microwave harmonics generated within a nanoscale tip-sample junction for feedback control in place of the DC tunneling current. Please see the attached poster to be presented at the Microscopy & Microanalysis-2018 meeting in Baltimore Monday August 6th as Post-deadline poster PDP-18. Applications include true sub-nm resolution in the carrier profiling of semiconductors. This method is especially appropriate for resistive samples where the spreading resistance flattens plots of the tunneling current vs. tip-sample distance with a scanning tunneling microscope. 
    more » « less
  3. Summary form only given. We are developing a scanning tunneling microscope that is portable and optimized for scanning frequency comb microscopy (SFCM) as one part of our effort to complete a prototype for the carrier profiling of semiconductors by SFCM. Conventional integral or integral plus proportion feedback control of the tunneling current in a scanning tunneling microscope (STM) is satisfactory once tunneling has been established but may cause tip-crash by integral windup during coarse approach. In tip-sample contact images with atomic-resolution may be obtained but the microwave frequency comb ceases because there is no optical rectification and scanning tunneling spectroscopy also fails. We are studying a new control algorithm based on approximating the tunneling current as a polynomial in the bias voltage where the coefficients in this polynomial are not required. It is noted that hanges in the apparatus, as well as the algorithms used for feedback control in the STM, are required to optimize this instrument for measuring the microwave frequency comb. 
    more » « less