skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Precision Synthesis of a Single Chain Polymorph of a 2D Solid within Single‐Walled Carbon Nanotubes
Abstract The discovery and synthesis of atomically precise low‐dimensional inorganic materials have led to numerous unusual structural motifs and nascent physical properties. However, access to low‐dimensional van der Waals (vdW)‐bound analogs of bulk crystals is often limited by chemical considerations arising from structural factors like atomic radii, bonding or coordination, and electronegativity. Using single‐walled carbon nanotubes (SWCNTs) as confinement templates, we demonstrate the synthesis of a short‐wave infrared‐absorbing quasi‐1D (q‐1D) chain polymorph of Sb2Te3([Sb4Te6]n) that is structurally and electronically distinct from its 2D counterpart. It is found that the q‐1D chain polymorph has both three‐ and five‐coordinate Sb atoms covalently bonded to Te and is thermodynamically stabilized by the electrostatic interaction between the encapsulated chain and the model SWCNT. The complementary experimental and computational results demonstrate the synthetic advantage of vdW nanotube confinement in the discovery of low‐dimensional polytypes with drastically altered physical properties and potential applications in energy conversion processes.  more » « less
Award ID(s):
2340918
PAR ID:
10641007
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
37
Issue:
28
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Van der Waals (vdW) materials are an indispensable part of functional device technology due to their versatile physical properties and ease of exfoliating to the low‐dimensional limit. Among all the compounds investigated so far, the search for magnetic vdW materials has intensified in recent years, fueled by the realization of magnetism in 2D. However, metallic magnetic vdW systems are still uncommon. In addition, they rarely host high‐mobility charge carriers, which is an essential requirement for high‐speed electronic applications. Another shortcoming of 2D magnets is that they are highly air sensitive. Using chemical reasoning, TaCo2Te2is introduced as an air‐stable, high‐mobility, magnetic vdW material. It has a layered structure, which consists of Peierls distorted Co chains and a large vdW gap between the layers. It is found that the bulk crystals can be easily exfoliated and the obtained thin flakes are robust to ambient conditions after 4 months of monitoring using an optical microscope. Signatures of canted antiferromagntic behavior are also observed at low‐temperature. TaCo2Te2shows a metallic character and a large, nonsaturating, anisotropic magnetoresistance. Furthermore, the Hall data and quantum oscillation measurements reveal the presence of both electron‐ and hole‐type carriers and their high mobility. 
    more » « less
  2. Abstract Advancements in low‐dimensional functional device technology heavily rely on the discovery of suitable materials which have interesting physical properties as well as can be exfoliated down to the 2D limit. Exfoliable high‐mobility magnets are one such class of materials that, not due to lack of effort, has been limited to only a handful of options. So far, most of the attention has been focused on the van der Waals (vdW) systems. However, even within the non‐vdW, layered materials, it is possible to find all these desirable features. Using chemical reasoning, it is found that NdSb2is an ideal example. Even with a relatively small interlayer distance, this material can be exfoliated down to few layers. NdSb2has an antiferromagnetic ground state with a quasi 2D spin arrangement. The bulk crystals show a very large, non‐saturating magnetoresistance along with highly anisotropic electronic transport properties. It is confirmed that this anisotropy originates from the 2D Fermi pockets which also imply a rather quasi 2D confinement of the charge carrier density. Both electron and hole‐type carriers show very high mobilities. The possible non‐collinear spin arrangement also results in an anomalous Hall effect. 
    more » « less
  3. Abstract Solution‐processable semiconducting 2D nanoplates and 1D nanorods are attractive building blocks for diverse technologies, including thermoelectrics, optoelectronics, and electronics. However, transforming colloidal nanoparticles into high‐performance and flexible devices remains a challenge. For example, flexible films prepared by solution‐processed semiconducting nanocrystals are typically plagued by poor thermoelectric and electrical transport properties. Here, a highly scalable 3D conformal additive printing approach to directly convert solution‐processed 2D nanoplates and 1D nanorods into high‐performing flexible devices is reported. The flexible films printed using Sb2Te3nanoplates and subsequently sintered at 400 °C demonstrate exceptional thermoelectric power factor of 1.5 mW m−1K−2over a wide temperature range (350–550 K). By synergistically combining Sb2Te32D nanoplates with Te 1D nanorods, the power factor of the flexible film reaches an unprecedented maximum value of 2.2 mW m−1K−2at 500 K, which is significantly higher than the best reported values for p‐type flexible thermoelectric films. A fully printed flexible generator device exhibits a competitive electrical power density of 7.65 mW cm−2with a reasonably small temperature difference of 60 K. The versatile printing method for directly transforming nanoscale building blocks into functional devices paves the way for developing not only flexible energy harvesters but also a broad range of flexible/wearable electronics and sensors. 
    more » « less
  4. One-dimensional (1D) van der Waals (vdW) materials display electronic and magnetic transport properties that make them uniquely suited as interconnect materials and for low-dimensional optoelectronic applications. However, there are only around 700 1D vdW structures in general materials databases, making database curation approaches ineffective for 1D discovery. Here, we utilize machine-learning techniques to discover 1D vdW compositions that have not yet been synthesized. Our techniques go beyond discovery efforts involving elemental substitutions and instead start with a composition space of 4741 binary and 392,342 ternary formulas. We predict up to 3000 binary and 10,000 ternary 1D compounds and further classify them by expected magnetic and electronic properties. Our model identifies MoI3, a material we experimentally confirm to exist with wire-like subcomponents and exotic magnetic properties. More broadly, we find several chalcogen-, halogen-, and pnictogen-containing compounds expected to be synthesizable using chemical vapor deposition and chemical vapor transport. 
    more » « less
  5. Abstract The rapid discovery of two-dimensional (2D) van der Waals (vdW) quantum materials has led to heterostructures that integrate diverse quantum functionalities such as topological phases, magnetism, and superconductivity. In this context, the epitaxial synthesis of vdW heterostructures with well-controlled interfaces is an attractive route towards wafer-scale platforms for systematically exploring fundamental properties and fashioning proof-of-concept devices. Here, we use molecular beam epitaxy to synthesize a vdW heterostructure that interfaces two material systems of contemporary interest: a 2D ferromagnet (1T-CrTe2) and a topological semimetal (ZrTe2). We find that one unit-cell (u.c.) thick 1T-CrTe2grown epitaxially on ZrTe2is a 2D ferromagnet with a clear anomalous Hall effect. In thicker samples (12 u.c. thick CrTe2), the anomalous Hall effect has characteristics that may arise from real-space Berry curvature. Finally, in ultrathin CrTe2(3 u.c. thickness), we demonstrate current-driven magnetization switching in a full vdW topological semimetal/2D ferromagnet heterostructure device. 
    more » « less