skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Granular Biphasic Colloidal Hydrogels for 3D Bioprinting
Abstract Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear‐thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces. To overcome this challenge, a novel solution: a biphasic, granular colloidal bioink designed to optimize cell viability and printing fidelity is introduced. The biphasic ink consists of cell‐laden polyethylene glycol (PEG) hydrogel microparticles embedded in a continuous gelatin methacryloyl (GelMA)‐nanosilicate colloidal network. Here, it is demonstrated that this biphasic bioink offers outstanding rheological properties, print fidelity, and structural stability. Furthermore, its utility for engineering complex tissues with multiple cell types and heterogeneous microenvironments is demonstrated, by incorporating β‐islet cells into the PEG microparticles and endothelial cells in the GelMA‐nanosilicate colloidal network. Using this approach, it is possible to induce cell patterning, enhance vascularization, and direct cellular function. The proposed biphasic bioink holds significant potential for numerous emerging biomedical applications, including tissue engineering and disease modeling.  more » « less
Award ID(s):
1944322
PAR ID:
10641098
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
13
Issue:
25
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogel microparticles (HMPs) are an emerging bioink that can allow three-dimensional (3D) printing of most soft biomaterials by improving physical support and maintaining biological functions. However, the mechanisms of HMP jamming within printing nozzles and yielding to flow remain underexplored. Here, we present an in-depth investigation via both experimental and computational methods on the HMP dissipation process during printing as a result of (i) external resistance from the printing apparatus and (ii) internal physicochemical properties of HMPs. In general, a small syringe opening, large or polydisperse size of HMPs, and less deformable HMPs induce high resistance and closer HMP packing, which improves printing fidelity and stability due to increased interparticle adhesion. However, smooth extrusion and preserving viability of encapsulated cells require low resistance during printing, which is associated with less shear stress. These findings can be used to improve printability of HMPs and facilitate their broader use in 3D bioprinting. 
    more » « less
  2. Three-dimensional (3D) bioprinting is important in the development of complex tissue structures for tissue engineering and regenerative medicine. However, the materials used for bioprinting, referred to as bioinks, must have a balance between a high viscosity for rapid solidification after extrusion and low shear force for cytocompatibility, which is difficult to achieve. Here, a novel bioink consisting of poly(ethylene glycol) (PEG) microgels prepared via off-stoichiometry thiol–ene click chemistry is introduced. Importantly, the microgel bioink is easily extruded, exhibits excellent stability after printing due to interparticle adhesion forces, and can be photochemically annealed with a second thiol–ene click reaction to confer long-term stability to printed constructs. The modularity of the bioink is also an advantage, as the PEG microgels have highly tunable physicochemical properties. The low force required for extrusion and cytocompatibility of the thiol–ene annealing reaction also permit cell incorporation during printing with high viability, and cells are able to spread and proliferate in the interstitial spaces between the microgels after the constructs have been annealed. Overall, these results indicate that our microgel bioink is a promising and versatile platform that could be leveraged for bioprinting and regenerative manufacturing. 
    more » « less
  3. The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM’s low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks’ mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA–MeHA–dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA–dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink. 
    more » « less
  4. Abstract Bioprinting is an emerging approach for fabricating cell‐laden 3D scaffolds via robotic deposition of cells and biomaterials into custom shapes and patterns to replicate complex tissue architectures. Bioprinting uses hydrogel solutions called bioinks as both cell carriers and structural components, requiring bioinks to be highly printable while providing a robust and cell‐friendly microenvironment. Unfortunately, conventional hydrogel bioinks have not been able to meet these requirements and are mechanically weak due to their heterogeneously crosslinked networks and lack of energy dissipation mechanisms. Advanced bioink designs using various methods of dissipating mechanical energy are aimed at developing next‐generation cellularized 3D scaffolds to mimic anatomical size, tissue architecture, and tissue‐specific functions. These next‐generation bioinks need to have high print fidelity and should provide a biocompatible microenvironment along with improved mechanical properties. To design these advanced bioink formulations, it is important to understand the structure–property–function relationships of hydrogel networks. By specifically leveraging biophysical and biochemical characteristics of hydrogel networks, high performance bioinks can be designed to control and direct cell functions. In this review article, current and emerging approaches in hydrogel design and bioink reinforcement techniques are critically evaluated. This bottom‐up perspective provides a materials‐centric approach to bioink design for 3D bioprinting. 
    more » « less
  5. Abstract We describe the synthesis, characterization and direct‐write 3D printing of triblock copolymer hydrogels that have a tunable response to temperature and shear stress. In aqueous solutions, these polymers utilize the temperature‐dependent self‐association of poly(alkyl glycidyl ether) ‘A’ blocks and a central poly(ethylene oxide) segment to create a physically crosslinked three‐dimensional network. The temperature response of these hydrogels was dependent upon composition, chain length and concentration of the ‘A’ block in the copolymer. Rheological experiments confirmed the existence of sol–gel transitions and the shear‐thinning behavior of the hydrogels. The temperature‐ and shear‐responsive properties enabled direct‐write 3D printing of complex objects with high fidelity. Hydrogel cytocompatibility was also confirmed by incorporating HeLa cells into select hydrogels resulting in high viabilities over 24 h. The tunable temperature response and innate shear‐thinning properties of these hydrogels, coupled with encouraging cell viability results, present an attractive opportunity for additive manufacturing and tissue engineering applications. © 2018 Society of Chemical Industry 
    more » « less