Abstract Optoelectronics are crucial for developing energy‐efficient chip technology, with phase‐change materials (PCMs) emerging as promising candidates for reconfigurable components in photonic integrated circuits, such as nonvolatile phase shifters. Antimony sulfide (Sb2S3) stands out due to its low optical loss and considerable phase‐shifting properties, along with the non‐volatility of both phases. This study demonstrates that the crystallization kinetics of Sb2S3can be switched from growth‐driven to nucleation‐driven by altering the sample dimension from bulk to film. This tuning of the crystallization process is critical for optical switching applications requiring control over partial crystallization. Calorimetric measurements with heating rates spanning over six orders of magnitude, reveal that, unlike conventional PCMs that crystallize below the glass transition, Sb2S3exhibits a measurable glass transition prior to crystallization from the undercooled liquid (UCL) phase. The investigation of isothermal crystallization kinetics provides insights into nucleation rates and crystal growth velocities while confirming the shift to nucleation‐driven behavior at reduced film thicknesses—an essential aspect for effective device engineering. A fundamental difference in chemical bonding mechanisms was identified between Sb2S3, which exhibits covalent bonding in both material phases, and other PCMs, such as GeTe and Ge2Sb2Te5, which demonstrate pronounced bonding alterations upon crystallization.
more »
« less
Decoupling Nucleation and Growth in Fast Crystallization of Phase Change Materials
Abstract Disentangling nucleation and growth in materials that crystallize on the nanosecond time scale is experimentally quite challenging since the relevant processes also take place on very small, i.e., sub‐micrometer length scales. Phase change materials are bad glass formers, which often crystallize rapidly. Here systematic changes in crystallization kinetics are shown in pseudo‐binary compounds of GeTe and Sb2Te3and related solids subjected to short laser pulses. Upon systematic changes in stoichiometry, the speed of crystallization changes by three orders of magnitude concomitantly with pronounced changes in stochasticity. Resolving individual grains with electron backscatter diffraction (EBSD) permits to disentangle of the process of nucleation and growth. From these experiments, supported by multiphysics simulations of crystallization, it can be concluded that high crystallization speeds with small stochasticity characterize phase change materials with fast nucleation, while compounds that nucleate slowly crystallize much more stochastically.
more »
« less
- Award ID(s):
- 1832817
- PAR ID:
- 10641114
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 39
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many phase change materials (PCMs) are found to crystallize without exhibiting a glass transition endotherm upon reheating. In this paper, we review experimental evidence revealing that these PCMs and likely other hyperquenched molecular and metallic systems can crystallize from the glassy state when reheated at a standard rate. Among these evidences, PCMs annealed below the glass transition temperature T g exhibit slower crystallization kinetics despite an increase in the number of sub-critical nuclei that should promote the crystallization speed. Flash calorimetry uncovers the glass transition endotherm hidden by crystallization and reveals a distinct change in kinetics when crystallization switches from the glassy to the supercooled liquid state. The resulting T g value also rationalizes the presence of the pre- T g relaxation exotherm ubiquitous of hyperquenched systems. Finally, the shift in crystallization temperature during annealing exhibits a non-exponential decay that is characteristic of structural relaxation in the glass. Modeling using a modified Turnbull equation for nucleation rate supports the existence of sub- T g fast crystallization and emphasizes the benefit of a fragile-to-strong transition for PCM applications due to a reduction in crystallization at low temperature (improved data retention) and increasing its speed at high temperature (faster computing).more » « less
-
Abstract Controlling crystallization kinetics is key to overcome the temperature–time dilemma in phase change materials employed for data storage. While the amorphous phase must be preserved for more than 10 years at slightly above room temperature to ensure data integrity, it has to crystallize on a timescale of several nanoseconds following a moderate temperature increase to near 2/3Tmto compete with other memory devices such as dynamic random access memory (DRAM). Here, a calorimetric demonstration that this striking variation in kinetics involves crystallization occurring either from the glassy or from the undercooled liquid state is provided. Measurements of crystallization kinetics of Ge2Sb2Te5with heating rates spanning over six orders of magnitude reveal a fourfold decrease in Kissinger activation energy for crystallization upon the glass transition. This enables rapid crystallization above the glass transition temperatureTg. Moreover, highly unusual for glass‐forming systems, crystallization at conventional heating rates is observed more than 50 °C belowTg, where the atomic mobility should be vanishingly small.more » « less
-
Abstract Non‐volatile phase‐change memory (PCM) devices are based on phase‐change materials such as Ge2Sb2Te5 (GST). PCM requires critically high crystallization growth velocity (CGV) for nanosecond switching speeds, which makes its material‐level kinetics investigation inaccessible for most characterization methods and remains ambiguous. In this work, nanocalorimetry enters this “no‐man's land” with scanning rate up to 1 000 000 K s−1(fastest heating rate among all reported calorimetric studies on GST) and smaller sample‐size (10–40 nm thick) typical of PCM devices. Viscosity of supercooled liquid GST (inferred from the crystallization kinetic) exhibits Arrhenius behavior up to 290 °C, indicating its low fragility nature and thus a fragile‐to‐strong crossover at ≈410 °C. Thin‐film GST crystallization is found to be a single‐step Arrhenius process dominated by growth of interfacial nuclei with activation energy of 2.36 ± 0.14 eV. Calculated CGV is consistent with that of actual PCM cells. This addresses a 10‐year‐debate originated from the unexpected non‐Arrhenius kinetics measured by commercialized chip‐based calorimetry, which reports CGV 103−105higher than those measured using PCM cells. Negligible thermal lag (<1.5 K) and no delamination is observed in this work. Melting, solidification, and specific heat of GST are also measured and agree with conventional calorimetry of bulk samples.more » « less
-
Abstract Nonvolatile photonic integrated circuits employing phase change materials have relied either on optical switching mechanisms with precise multi-level control but poor scalability or electrical switching with seamless integration and scalability but mostly limited to a binary response. Recent works have demonstrated electrical multi-level switching; however, they relied on the stochastic nucleation process to achieve partial crystallization with low demonstrated repeatability and cyclability. Here, we re-engineer waveguide-integrated microheaters to achieve precise spatial control of the temperature profile (i.e., hotspot) and, thus, switch deterministic areas of an embedded phase change material cell. We experimentally demonstrate this concept using a variety of foundry-processed doped-silicon microheaters on a silicon-on-insulator platform to trigger multi-step amorphization and reversible switching of Sb2Se3and Ge2Sb2Se4Te alloys. We further characterize the response of our microheaters using Transient Thermoreflectance Imaging. Our approach combines the deterministic control resulting from a spatially resolved glassy-crystalline distribution with the scalability of electro-thermal switching devices, thus paving the way to reliable multi-level switching towards robust reprogrammable phase-change photonic devices for analog processing and computing.more » « less
An official website of the United States government
