skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lineage‐Specific Mesenchymal Stromal Cells Derived from Human iPSCs Showed Distinct Patterns in Transcriptomic Profile and Extracellular Vesicle Production
Abstract Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC‐to‐iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage‐specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage‐specific iMSCs, and six source‐specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo.  more » « less
Award ID(s):
1943798 2130192 2229111
PAR ID:
10641200
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
28
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The clinical translation of mesenchymal stem cells (MSCs) is limited by population heterogeneity and inconsistent responses to engineered signals. Specifically, the extent in which MSCs respond to mechanical cues varies significantly across MSC lines. Although induced pluripotent stem cells (iPSCs) have recently emerged as a novel cell source for creating highly homogeneous MSC (iMSC) lines, cellular mechanosensing of iMSCs on engineered materials with defined mechanics is not well understood. Here, we tested the mechanosensing properties of three human iMSC lines derived from iPSCs generated using a fully automated platform. Stiffness-driven changes in morphology were comparable between MSCs and iMSCs cultured atop hydrogels of different stiffness. However, contrary to tissue derived MSCs, no significant changes in iMSC morphology were observed between iMSC lines atop different stiffness hydrogels, demonstrating a consistent response to mechanical signals. Further, stiffness-driven changes in mechanosensitive biomarkers were more pronounced in iMSCs than MSCs, which shows that iMSCs are more adaptive and responsive to mechanical cues than MSCs. This study reports that iMSCs are a promising stem cell source for basic and applied research due to their homogeneity and high sensitivity to engineered mechanical signals. 
    more » « less
  2. Bone marrow mesenchymal stem cells (BM MSCs) play a tumor-supportive role in promoting drug resistance and disease relapse in multiple myeloma (MM). Recent studies have discovered a sub-population of MSCs, known as inflammatory MSCs (iMSCs), exclusive to the MM BM microenvironment and implicated in drug resistance. Through a sophisticated analysis of public expression data from unexpanded BM MSCs, we uncovered a positive association between iMSC signature expression and minimal residual disease. While in vitro expansion generally results in the loss of the iMSC signature, our meta-analysis of additional public expression data demonstrated that cytokine stimulation, including IL1-β and TNF-α, as well as immune cells such as neutrophils, macrophages, and MM cells, can reactivate the signature expression of iMSCs to varying extents. These findings underscore the importance and potential utility of cytokine stimulation in mimicking the gene expression signature of early passage of iMSCs for functional characterizations of their tumor-supportive roles in MM. 
    more » « less
  3. Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation. 
    more » « less
  4. Liu, Tao (Ed.)
    Neural crest cells (NCC) are multipotent migratory stem cells that originate from the neural tube during early vertebrate embryogenesis. NCCs give rise to a variety of cell types within the developing organism, including neurons and glia of the sympathetic nervous system. It has been suggested that failure in correct NCC differentiation leads to several diseases, including neuroblastoma (NB). During normal NCC development, MYCN is transiently expressed to promote NCC migration, and its downregulation precedes neuronal differentiation. Overexpression of MYCN has been linked to high-risk and aggressive NB progression. For this reason, understanding the effect overexpression of this oncogene has on the development of NCC-derived sympathoadrenal progenitors (SAP), which later give rise to sympathetic nerves, will help elucidate the developmental mechanisms that may prime the onset of NB. Here, we found that overexpressing human EGFP-MYCN within SAP lineage cells in zebrafish led to the transient formation of an abnormal SAP population, which displayed expanded and elevated expression of NCC markers while paradoxically also co-expressing SAP and neuronal differentiation markers. The aberrant NCC signature was corroborated within vivotime-lapse confocal imaging in zebrafish larvae, which revealed transient expansion ofsox10reporter expression in MYCN overexpressing SAPs during the early stages of SAP development. In these aberrant MYCN overexpressing SAP cells, we also found evidence of dampened BMP signaling activity, indicating that BMP signaling disruption occurs following elevated MYCN expression. Furthermore, we discovered that pharmacological inhibition of BMP signaling was sufficient to create an aberrant NCC gene signature in SAP cells, phenocopying MYCN overexpression. Together, our results suggest that MYCN overexpression in SAPs disrupts their differentiation by eliciting abnormal NCC gene expression programs, and dampening BMP signaling response, having developmental implications for the priming of NBin vivo. 
    more » « less
  5. Abstract Neural differentiation of mesenchymal stem cells is a controversial phenomenon, as it would require transdifferentiation across the mesoderm-ectoderm barrier. However, several laboratories have observed that MSCs are able to be induced to express neural characteristics. Previously, we demonstrated that the cAMP-elevating agents, forskolin and IBMX, induced neural-like differentiation of MSCs, including expression of neural markers and increased sensitivity to neurotransmitters. However, due to the broad range of effects that forskolin and IBMX can elicit through the intracellular second messenger, cAMP, a better mechanistic understanding is required. Here, we show that neural induction by forskolin and IBMX is dependent on downregulation of expression of the master transcriptional regulator, neuron restrictive silencer factor (NRSF), and its downstream target genes. Since silencing of NRSF is known to initiate neural differentiation, it suggests that forskolin and IBMX result in transdifferentiation of MSCs into a neural lineage. 
    more » « less