skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Band Engineering of ErAs:InGaAlBiAs Nanocomposite Materials for Terahertz Photoconductive Switches Pumped at 1550 nm
Abstract Terahertz technology has the potential to have a large impact in myriad fields, such as biomedical science, spectroscopy, and communications. Making these applications practical requires efficient, reliable, and low‐cost devices. Photoconductive switches (PCS), devices capable of emitting and detecting terahertz pulses, are a technology that needs more efficiency when working at telecom wavelength excitation (1550 nm) to exploit the advantages this wavelength offers. ErAs:InGaAs is a semiconductor nanocomposite working at this energy; however, high dark resistivity is challenging due to a high electron concentration as the Fermi level lies in the conduction band. To increase dark resistivity, ErAs:InGaAlBiAs material is used as the active material in a PCS detecting Terahertz pulses. ErAs nanoparticles reduce the carrier lifetime to subpicosecond values required for short temporal resolution, while ErAs pins the effective Fermi level in the host material bandgap. Unlike InGaAs, InGaAlBiAs offers enough freedom for band engineering to have a material compatible with a 1550 nm pump and a Fermi level deep in the bandgap, meaning low carrier concentration and high dark resistivity. Band engineering is possible by incorporating aluminum to lift the conduction band edge to the Fermi level and bismuth to keep a bandgap compatible with 1550 nm excitation.  more » « less
Award ID(s):
2011824
PAR ID:
10641213
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
34
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We calculate critical electronic conduction parameters of the amorphous phase of Ge 2 Sb 2 Te 5 (GST), a common material used in phase change memory. We estimate the room temperature bandgap of metastable amorphous GST to be E g (300K) = 1.84 eV based on a temperature dependent energy band model. We estimate the free carrier concentration at the melting temperature utilizing the latent heat of fusion to be 1.47 x 10 22 cm -3 . Using the thin film melt resistivity, we calculate the carrier mobility at melting point as 0.187 cm 2 /V-s. Assuming that metastable amorphous GST is a supercooled liquid with bipolar conduction, we compute the total carrier concentration as a function of temperature and estimate the room temperature free carrier concentration as p(300K) ≈ n(300K) = 1.69×10 17 cm -3 . Free electrons and holes are expected to recombine over time and the stable (drifted) amorphous GST is estimated to have p-type conduction with p(300K) ≈ 6×10 16 cm -3 . 
    more » « less
  2. Abstract The coupling of terahertz optical techniques to scattering-type scanning near-field microscopy (s-SNOM) has recently emerged as a valuable new paradigm for probing the properties of semiconductors and other materials on the nanoscale. Researchers have demonstrated a family of related techniques, including terahertz nanoscopy (elastic scattering, based on linear optics), time-resolved methods, and nanoscale terahertz emission spectroscopy. However, as with nearly all examples of s-SNOM since the technique’s inception in the mid-1990s, the wavelength of the optical source coupled to the near-field tip is long, usually at energies of 2.5 eV or less. Challenges in coupling of shorter wavelengths (i.e., blue light) to the nanotip has greatly inhibited the study of nanoscale phenomena in wide bandgap materials such as Si and GaN. Here, we describe the first experimental demonstration of s-SNOM using blue light. With femtosecond pulses at 410 nm, we generate terahertz pulses directly from bulk silicon, spatially resolved with nanoscale resolution, and show that these signals provide spectroscopic information that cannot be obtained using near-infrared excitation. We develop a new theoretical framework to account for this nonlinear interaction, which enables accurate extraction of material parameters. This work establishes a new realm of possibilities for the study of technologically relevant wide-bandgap materials using s-SNOM methods. 
    more » « less
  3. Noble-transition metal alloys offer emergent optical and electronic properties for near-infrared (NIR) optoelectronic devices. We investigate the optical and electronic properties of CuxPd1−x alloy thin films and their ultrafast electron dynamics under NIR excitation. Ultraviolet photoelectron spectroscopy measurements supported by density functional theory calculations show strong d-band hybridization between the Cu 3d and Pd 4d bands. These hybridization effects result in emergent optical properties, most apparent in the dilute Pd case. Time-resolved terahertz spectroscopy with NIR (e.g., 1550 nm) excitation displays composition-tunable electron dynamics. We posit that the negative peak in the normalized increment of transmissivity (ΔT/T) below 2 ps from dilute Pd alloys is due to non-thermalized hot-carrier generation. On the other hand, Pd-rich alloys exhibit an increase in ΔT/T due to thermalization effects upon ultrafast NIR photoexcitation. CuxPd1−x alloys in the dilute Pd regime may be a promising material for future ultrafast NIR optoelectronic devices. 
    more » « less
  4. Abstract Tellurium‐hyperdoped silicon (Si:Te) shows significant promise as an intermediate band material candidate for highly efficient solar cells and photodetectors. Time‐resolved THz spectroscopy (TRTS) is used to study the excited carrier dynamics of Si hyperdoped with 0.5, 1, and 2%. The two photoexcitation wavelengths enable us to understand the temperature‐dependent carrier transport in the hyperdoped region in comparison with the Si region. Temperature significantly influences the magnitude of transient conductivity and decay time when photoexcited by light with a wavelength of 400 nm. Due to the differential mobilities in the Si and hyperdoped regions, such dependence is absent under 266‐nm excitation. Consistent with the literature, the charge‐carrier lifetime decreases with increasing dopant concentration. It is found that the photoconductivity becomes less temperature‐dependent as the dopant concentration increases. In the literature, the photodetection range of Si:Te extends to a wavelength of 5.0 µm at a temperature of 20 K. The simulation shows that carrier diffusion, driven by concentration gradients, is strongly temperature dependent and impacts transient photoconductivity decay curves. The simulation also revealed that, in the hyperdoped regions, the carrier recombination rate remains independent of temperature. 
    more » « less
  5. Cubic boron nitride (cBN) is a relatively less studied wide bandgap semiconductor despite its many promising mechanical, thermal, and electronic properties. We report on the electronic, structural, and optical characterization of commercial cBN crystal platelets. Temperature dependent transport measurements revealed the charge limited diode behavior of the cBN crystals. The equilibrium Fermi level was determined to be 0.47 eV below the conduction band, and the electron conduction was identified as n-type. Unirradiated dark and amber colored cBN crystals displayed broad photoluminescence emission peaks centered around different wavelengths. RC series zero phonon line defect emission peaks were observed at room temperature from the electron beam irradiated and oxygen ion implanted cBN crystals, making this material a promising candidate for high power microwave devices, next generation power electronics, and future quantum sensing applications. 
    more » « less