Abstract Magnetic fields are uniquely valuable for creating colloidal nanostructured materials, not only providing a means for controlled synthesis but also guiding their self‐assembly into distinct superstructures. In this study, a magnetothermal process for synthesizing hybrid nanostructures comprising ferrimagnetic magnetite nanorods coated with fluorescent perovskite nanocrystals is reported and their magnetic assembly into superstructures capable of emitting linear and circularly polarized light are demonstrated. Under UV excitation, the superstructures assembled in a liner magnetic field produce linear polarized luminescence, and those assembled in a chiral magnetic field exhibit strong circularly polarized luminescence (CPL) with aglumvalue up to 0.44 (±0.004). The CPL is believed to originate from the dipolar interaction between neighboring perovskite nanocrystals attached to the chiral assemblies and the chiral‐selective absorption of the perovskite emission by the magnetite phase. The magnetic synthesis and assembly approaches and the resulting distinctive chiral superstructures are anticipated to open up new avenues for designing diverse functional chiroptical devices. 
                        more » 
                        « less   
                    
                            
                            Transferred Chiroptical Transitions in Chiral Binaphthyl /π‐Conjugated Polymer Hybrid Films: Significance of Aromatic Solvent‐Mediated Co‐Crystallization
                        
                    
    
            Abstract For advancing next‐generation optoelectronics, a versatile strategy for fabricating π‐conjugated polymer (π‐CP)/chiral‐small molecule (SM) hybrid films through co‐crystallization‐mediated chirality transfer is reported. The transfer of optical chirality from 1,1′‐binaphthyl–2,2′‐diamine (BN), a representative chiral inducer SM, to thin films of various achiral π‐CPs, including non‐fluorene π‐CPs, is achieved by simply blending the π‐CPs with BN using aromatic organic solvents. The resulting π‐CP/chiral‐SM hybrid films exhibit chiroptical responses at the main electronic absorption bands of various π‐CPs. Studies of the morphology, crystalline structure, and phase‐separation structure of a representative hybrid system of poly(3‐hexylthiophene) (P3HT) and BN reveal that these hybrid films exhibit a characteristic lamellar structure where the π‐CPs co‐crystallize with chiral BN molecules, facilitated by aromatic solvent‐assisted intermolecular π–π interactions. In‐depth photophysical analysis suggests that BN molecules co‐crystallized in the P3HT lamellar structure induce asymmetrically misaligned transition dipoles along the P3HT conjugated backbone, transferring optical chirality from BN to P3HT under circularly polarized light illumination. As a proof‐of‐concept, chiroptical photodiodes based on π‐CP/chiral‐SM hybrid films and printed micropatterns, exhibiting a distinguishable photocurrent response depending on the direction of circularly polarized light are successfully demonstrated. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2154617
- PAR ID:
- 10641231
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 51
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A method is provided for using twisted acenes, and more particularly to configurationally stable twisted acenes that are imbedded into the structure of [7]helicene at the fulcrum ring to form useable material structures. The helicene propa- gates its chiral nature into the acene, while acting as a locking mechanism to thermal racemization. These doubly- helical compounds are part of a new homologous series of polycyclic aromatic hydrocarbons, namely the [7]helitwis- tacenes. Such [7]helitwistacenes have utility as materials suitable for forming a circularly polarized organic light emitting diode (CP-OLED) for direct emission of circularly polarized (CP) light for the fabrication of high efficiency electronic displays.more » « less
- 
            null (Ed.)While the development of chiral molecules displaying circularly polarized luminescence (CPL) has received considerable attention, the corresponding CPL intensity, g lum, hardly exceeds 10 −2 at the molecular level owing to the difficulty in optimizing the key parameters governing such a luminescence process. To address this challenge, we report here the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on carbo[6]helicene, where the latter acts as either a chiral electron acceptor or a donor unit. This comprehensive experimental and theoretical investigation shows that the magnitude and relative orientation of the electric ( μe ) and magnetic (μ m ) dipole transition moments can be tuned efficiently with regard to the molecular chiroptical properties, which results in high g lum values, i.e. up to 3–4 × 10 −2 . Our investigations revealed that the optimized mutual orientation of the electric and magnetic dipoles in the excited state is a crucial parameter to achieve intense helicene-mediated exciton coupling, which is a major contributor to the obtained strong CPL. Finally, top-emission CP-OLEDs were fabricated through vapor deposition, which afforded a promising g El of around 8 × 10 −3 . These results bring about further molecular design guidelines to reach high CPL intensity and offer new insights into the development of innovative CP-OLED architectures.more » « less
- 
            Chirality, a fundamental attribute of asymmetry, pervades in both nature and functional soft materials. In chiral material systems design, achieving global symmetry breaking of building blocks during assembly, with or without the aid of additives, has emerged as a promising strategy across domains including chiral sensing, electronics, photonics, spintronics, and biomimetics. We first introduce the fundamental aspects of chirality, including its structural basis and symmetry-breaking mechanisms considering free energy minimization. We particularly emphasize supramolecular assembly, such as through the formation of chiral liquid crystal phases. Next, we summarize processing strategies to control chiral symmetry breaking, exploiting external fields such as flow, magnetic fields, and templates. The final section discusses interactions between chiral molecular assemblies with circularly polarized (CP) light and electronic spin and their applications in CP light detectors, CP-spin-organic light-emitting diodes, CP displays, and spintronic devices based on the chirality-induced spin selectivity effect.more » « less
- 
            π-Helical push–pull dyes were prepared and their (chir)optical properties were investigated both experimentally and computationally. Specific fluorescent behaviour of bis-substituted system was observed with unprecedented solvent effect on the intensity of circularly polarized luminescence (CPL, dissymmetry factor decreasing from 10 −2 to 10 −3 with an increase in solvent polarity) that was linked to a change in symmetry of chiral excited state and suppression of interbranched exciton coupling. The results highlight the potential of CPL spectroscopy to study and provide a deeper understanding of electronic photophysical processes in chiral π-conjugated molecules.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
