Single-particle-type suspension reactors and other membrane-free reactor designs for photoelectrochemical (PEC) water splitting, although promising for low-cost H2 production, suffer the drawback of H2 and O2 co-evolution leading to product losses through back reactions. These back reactions need to be minimized to increase the solar-to-hydrogen (STH) efficiency. H2/O2 co-evolution also raises safety considerations, and a large-scale facility should maintain the H2 concentration below the lower flammability limit with O2 to eliminate explosion hazards. Herein, inert gas bubbling through the electrolyte was investigated with a tandem semiconductor for light-driven PEC water splitting without applied electrical bias as a technique to mitigate back reactions and maintain the output H2 safely below the lower flammability limit during co-evolution. A planar structure of nanoparticulate-Pt/Ni/np+-Si/FTO/TiO2 was fabricated into both wired-electrode and fully integrated configurations capable of unassisted solar water splitting, though additional UV bias increased the current density and gas production rates. The device was characterized in aqueous electrolyte from alkaline to neutral conditions to balance water-splitting activity and durability against corrosion, displaying strong stability in a pH 11 buffer solution. Moreover, the H2 faradaic efficiency was increased from 59% without bubbling to > 98% using inert carrier gas to increase the mass transfer of products to the gas phase. Integrated tandem photoelectrode performance indicated a tradeoff in bubbling flow rate between decreased back reactions and decreased light absorption due to bubble reflectance.
more »
« less
This content will become publicly available on March 14, 2026
Structured bubbling flow in fluidized beds with oscillating gas injection which alternates with horizontal position
Abstract Structured bubbling with a triangular lattice pattern has been demonstrated previously to form in fluidized beds with oscillated gas injection velocity. Here, we demonstrate using two‐fluid model simulations that dividing the gas distributor into slices and oscillating gas flow with a phase offset between consecutive slices enables structured bubbling to form with a wider range of bubble sizes and lattice configurations. Local particle solidification below bubbles leads to the formation of these structures, as manifested in high particle pressures in simulations. Varying the number of slices and phase offset enables a number of configurations that mix particles faster than cases with conventional structured bubbling or unstructured bubbling with the same overall gas flow rate.
more »
« less
- Award ID(s):
- 2144763
- PAR ID:
- 10641610
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- AIChE Journal
- Volume:
- 71
- Issue:
- 7
- ISSN:
- 0001-1541
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nanoparticles embedded within a crystalline solid serve as impurity phonon scattering centers that reduce lattice thermal conductivity, a desirable result for thermoelectric applications. Most studies of thermal transport in nanoparticle-laden composite materials have assumed the nanoparticles to possess a single size. If there is a distribution of nanoparticle sizes, how is thermal conductivity affected? Moreover, is there a best nanoparticle size distribution to minimize thermal conductivity? In this work, we study the thermal conductivity of nanoparticle-laden composites through a molecular dynamics approach which naturally captures phonon scattering processes more rigorously than previously used analytical theories. From thermal transport simulations of a systematic variety of nanoparticle configurations, we empirically formulate how nanoparticle size distribution, particle number density, and volume fraction affect the lattice thermal conductivity. We find at volume fractions below 10%, the particle number density is by far the most impactful factor on thermal conductivity and at fractions above 10%, the effect of the size distribution and number density is minimal compared to the volume fraction. In fact, upon comparisons of configurations with the same particle number density and volume fractions, the lattice thermal conductivity of a single nanoparticle size can be lower than that of a size distribution which contradicts intuitions that a single size would attenuate phonon transport less than a spectrum of sizes. The random alloy, which can be considered as a single size configuration of maximum particle number density where the nanoparticle size is equal to the lattice constant, is the most performant in thermal conductivity reduction at volume fractions below 10%. We conclude that nanoparticle size distribution only plays a minor role in affecting lattice thermal conductivity with the particle number density and volume fraction being the more significant factors that should be considered in fabrication of nanoparticle-laden composites for potential improved thermoelectric performance.more » « less
-
Abstract We consider the harmonic map heat flow for maps$$\mathbb {R}^{2} \to \mathbb {S}^2$$. It is known that solutions to the initial value problem exhibit bubbling along a well-chosen sequence of times. We prove that every sequence of times admits a subsequence along which bubbling occurs. This is deduced as a corollary of our main theorem, which shows that the solution approaches the family of multi-bubble configurations in continuous time.more » « less
-
Particle-laden flows of sedimenting solid particles or droplets in a carrier gas have strong inter-phase coupling. Even at low particle volume fractions, the two-way coupling can be significant due to the large particle to gas density ratio. In this semi-dilute regime, the slip velocity between phases leads to sustained clustering that strongly modulates the overall flow. The analysis of perturbations in homogeneous shear reveals the process by which clusters form: (i) the preferential concentration of inertial particles in the stretching regions of the flow leads to the formation of highly concentrated particle sheets, (ii) the thickness of the latter is controlled by particle-trajectory crossing, which causes a local dispersion of particles, (iii) a transverse Rayleigh–Taylor instability, aided by the shear-induced rotation of the particle sheets towards the gravity normal direction, breaks the planar structure into smaller clusters. Simulations in the Euler–Lagrange formalism are compared to Euler–Euler simulations with the two-fluid and anisotropic-Gaussian methods. It is found that the two-fluid method is unable to capture the particle dispersion due to particle-trajectory crossing and leads instead to the formation of discontinuities. These are removed with the anisotropic-Gaussian method which derives from a kinetic approach with particle-trajectory crossing in mind.more » « less
-
null (Ed.)Recent experiments show that quasi-one-dimensional lattices of self-propelled droplets exhibit collective instabilities in the form of out-of-phase oscillations and solitary-like waves. This hydrodynamic lattice is driven by the external forcing of a vertically vibrating fluid bath, which invokes a field of subcritical Faraday waves on the bath surface, mediating the spatio-temporal droplet coupling. By modelling the droplet lattice as a memory-endowed system with spatially non-local coupling, we herein rationalize the form and onset of instability in this new class of dynamical oscillator. We identify the memory-driven instability of the lattice as a function of the number of droplets, and determine equispaced lattice configurations precluded by geometrical constraints. Each memory-driven instability is then classified as either a super- or subcritical Hopf bifurcation via a systematic weakly nonlinear analysis, rationalizing experimental observations. We further discover a previously unreported symmetry-breaking instability, manifest as an oscillatory–rotary motion of the lattice. Numerical simulations support our findings and prompt further investigations of this nonlinear dynamical system.more » « less
An official website of the United States government
