Recent advances in the use of viral vectors for gene therapy has created a need for efficient downstream processing of these novel therapeutics. Single-pass tangential flow filtration (SPTFF) can potentially improve final product quality via reductions in shear, and it can increase manufacturing productivity via simple implementation into continuous/intensified processes. This study investigated the impact of variations in pressure and flow rate along the length of the membrane on overall SPTFF performance. Constant-flux filtration experiments at feed fluxes from 14 to 420 L/m2/h (Reynolds numbers <20) were performed using Pellicon® 3 TFF cassettes with fluorescent nanoparticles as model viral vectors. The location of nanoparticle accumulation shifted towards the filter outlet at high conversion and was also a function of the permeate flow configuration. These phenomena were explained using a newly developed concentration polarization model that predicts the distribution in local wall concentration over the length of the membrane. The model accurately captured the observed nanoparticle accumulation trends, including the effects of the permeate flow profile (co-current, divergent, or convergent flow) on nanoparticle accumulation within the SPTFF module. Nanoparticle accumulation at moderate conversion was more uniform using convergent flow, but nanoparticle accumulation at 80 % conversion (5x concentration factor) can be minimized using a divergent flow configuration. The local wall concentration model was also used to evaluate the critical flux by assuming that fouling occurs when the nanoparticle concentration at any point along the membrane surface exceeds 15 % by volume. These results provide important insights for the design and operation of SPTFF technology for inline concentration of viral vectors.
more »
« less
Inline Protein Concentration by Vibratory Single Pass Tangential Flow Filtration
ABSTRACT Single Pass Tangential Flow Filtration (SPTFF) is increasingly used for inline concentration and final formulation in intensified/continuous processes for monoclonal antibody products. However, these modules typically operate at low feed flux, requiring significant membrane area and often complex internal staging to achieve the desired concentration factor. In this study, a vibration‐assisted SPTFF system was used for inline concentration of soluble protein. The maximum sustainable flux and concentration factor were evaluated under vibratory and non‐vibratory conditions using flux‐stepping experiments. SPTFF performed under vibration was able to achieve single pass concentration factors of 20× at a feed flux of 17.2 L/m2/h, while the non‐vibratory system showed rapid fouling at much lower concentration factors. Furthermore, the vibratory module achieved a 6‐fold higher concentration factor compared to a screened channel cassette. Long‐term filtration experiments demonstrated that the vibratory system could concentrate a 20 g/L protein solution to 100 g/L using a single cassette with stable operation for more than 8 h without protein aggregation. This work highlights the potential opportunity to develop vibratory SPTFF systems for intensified bioprocessing.
more »
« less
- Award ID(s):
- 2310832
- PAR ID:
- 10641798
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Biotechnology Journal
- Volume:
- 20
- Issue:
- 9
- ISSN:
- 1860-6768
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Forward osmosis (FO) has primarily been explored for applications in water desalination. While FO has also shown potential in concentrating dairy products, little to no attention has been paid to its potential in concentrating biotherapeutics, particularly to the very high concentrations needed for many monoclonal antibody products that are delivered by subcutaneous injection. This study demonstrates the feasibility of using FO as an alternative to ultrafiltration (UF) to achieve highly concentrated protein formulations using human Immunoglobin G (hIgG) as a model protein. The permeate flux in FO, using 1 M NaCl as the draw solution, decreased with increasing hIgG concentration due primarily to concentration polarization effects that are strongly influenced by the increase in feed viscosity for the concentrated hIgG solution. The importance of the hIgG viscosity on the FO performance was demonstrated by performing experiments with concentrated polyethylene glycol solutions and through mathematical modeling that accounts for the effects of both external and internal concentration polarization on FO performance. Batch concentration experiments with FO achieved final hIgG concentrations greater than 290 g/L compared to a maximum achievable concentration in UF of approximately 150 g/L. These results clearly demonstrate the potential of using FO, with high osmotic pressure draw solutions, to achieve highly concentrated formulations of therapeutic proteins that are beyond the capability of current UF processes.more » « less
-
null (Ed.)Precipitation can be used for the initial purification of monoclonal antibodies (mAbs), with the soluble host cell proteins removed in the permeate by tangential flow microfiltration. The objective of this study was to examine the use of a feed-and-bleed configuration to increase the effective conversion (ratio of permeate to feed flow rates) in the hollow fiber module to enable more effective washing of the precipitate. Experiments were performed using human serum Immunoglobulin G (IgG) precipitates formed with 10 mM zinc chloride and 7 wt% polyethylene glycol. The critical flux was evaluated as a function of the shear rate and IgG concentration, with the resulting correlation used to predict conditions that can achieve 90% conversion in a single pass with minimal fouling. Experimental data for both the start-up and steady-state performance are in good agreement with model calculations. These results were used to analyze the performance of an enhanced continuous precipitation–microfiltration process using the feed-and-bleed configuration for the initial capture / purification of a mAb product.more » « less
-
Abstract Precipitation can be used for the initial purification of monoclonal antibodies (mAbs), with the soluble host cell proteins removed in the permeate by tangential flow microfiltration. The objective of this study was to examine the use of a feed‐and‐bleed configuration to increase the effective conversion (ratio of permeate to feed flow rates) in the hollow fiber module to enable more effective washing of the precipitate. Experiments were performed using human serum Immunoglobulin G (IgG) precipitates formed with 10 mM zinc chloride and 7 wt% polyethylene glycol. The critical flux was evaluated as a function of the shear rate and IgG concentration, with the resulting correlation used to predict conditions that can achieve 90% conversion in a single pass with minimal fouling. Experimental data for both the start‐up and steady‐state performance are in good agreement with model calculations. These results were used to analyze the performance of an enhanced continuous precipitation–microfiltration process using the feed‐and‐bleed configuration for the initial capture / purification of a mAb product.more » « less
-
ABSTRACT To enable adeno‐associated viral vectors (AAV) to achieve their maximum potential, next‐generation manufacturing processes must be developed to make gene therapies more affordable and accessible. This study focused on the design of two different intensified AAV downstream manufacturing processes at bench and pilot scale. Novel clarification methods were studied at bench scale, including the use of BioOptimal™ MF‐SL tangential flow microfilters for continuous removal of cell debris. Membrane adsorbers were used for further clarification, including DNA removal. Single pass tangential flow filtration (SPTFF) was implemented at bench scale by feeding the clarified cell lysate (CCL) into two Pellicon XL50 cassettes with 100 kDa regenerated cellulose membranes. At pilot scale, a multi‐membrane staged SPTFF module was designed to concentrate 10 L of AAV CCL. Both SPTFF systems provided 12X inline volumetric concentration with AAV yield > 99% after an appropriate buffer chase. Host cell protein removal was 48% and 37% for the bench and pilot scale processes, respectively. As an initial proof‐of‐concept, an integrated process was developed at pilot‐scale which linked clarification, SPTFF, and affinity chromatography. The integrated process offered an 81% reduction in total operating time (due to the reduced volume of load material for the affinity column after preconcentration by SPTFF), 36% improvement in affinity resin utilization (due to the higher AAV concentration in the column load), and an estimated 10% reduction in raw material costs. These improvements translated to an 8.5‐fold increase in overall productivity compared to an equivalent batch process, underscoring the potential for SPTFF to intensify large‐scale AAV downstream processing.more » « less
An official website of the United States government
