skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Glacier Geoengineering May Have Unintended Consequences for Marine Ecosystems and Fisheries
Abstract Numerous proposed geoengineering schemes to mitigate climate change and its consequences are now widely discussed in the scientific literature. Sea level rise is a clear example of the implications of climate change with a further committed rise of at least 2–3 m embedded within the Earth System from +1.5°C of global warming. A bold suggestion to reduce sea level rise is to install underwater barriers to reduce the inflow of oceanic heat around Antarctica and Greenland. Inflow of warm, saline water masses drives ice melt and the destabilization of tidewater glaciers. Whilst the basic theory that barriers would stem oceanic heat flow is uncontroversial, the extent to which barriers might reduce future ice mass loss is less certain. There are numerous concerns about the viability and side‐effects of this proposed intervention. We use existing field observations and representative fjord‐scale models for the Greenland's largest glacier, Sermeq Kujalleq in the Ilulissat Icefjord, to suggest that there is already sufficient evidence to conclude that artificial barrier installation would have negative regional implications for marine productivity. The effects on fisheries are a concern as negative implications for Greenland's regional fisheries are unlikely to be socially acceptable. Increasing “geoengineeringization” of the Earth Sciences is likely to continue in coming decades as society grapples with the challenges of slowing climate change and mitigating its consequences. To produce beneficial results, the technical and social viabilities of geoengineering concepts need to be considered in parallel, with the latter determined in a complex social, economic and cultural nexus.  more » « less
Award ID(s):
2212654
PAR ID:
10642026
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
AGU Advances
Volume:
6
Issue:
4
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Previous climate modeling studies demonstrate the ability of feedback-regulated, stratospheric aerosol geoengineering with injection at multiple independent latitudes to meet multiple simultaneous temperature-based objectives in the presence of anthropogenic climate change. However, the impacts of climate change are not limited to rising temperatures but also include changes in precipitation, loss of sea ice, and many more; knowing how a given geoengineering strategy will affect each of these climate metrics is vital to understanding the limits and trade-offs of geoengineering. In this study, we first introduce a new method of visualizing the design space in which desired climate outcomes are represented by 2-D surfaces on a 3-D graph. Surface orientations represent how different injection choices influence that objective, and intersecting surfaces represent objectives which can be met simultaneously. Using this representation as a guide, we present simulations of two new strategies for feedback-regulated aerosol injection, using the Community Earth System Model with the Whole Atmosphere Community Climate Model – CESM1(WACCM). The first simultaneously manages global mean temperature, tropical precipitation centroid, and Arctic sea ice extent, while the second manages global mean precipitation, tropical precipitation centroid, and Arctic sea ice extent. Both simulations control the tropical precipitation centroid to within 5 % of the goal, and the latter controls global mean precipitation to within 1 % of the goal. Additionally, the first simulation overcompensates sea ice, while the second undercompensates sea ice; all of these results are consistent with the expectations of our design space model. In addition to showing that precipitation-based climate metrics can be managed using feedback alongside other goals, our simulations validate the utility of our design space visualization in predicting our climate model behavior under a given geoengineering strategy, and together they help illustrate the fundamental limits and trade-offs of stratospheric aerosol geoengineering. 
    more » « less
  2. Abstract Sea level rise (SLR) is a global concern in the era of climate change, prompting the exploration of interventions such as solar radiation modification through stratospheric aerosol injection (SAI). This intervention could affect the physical system in various ways. The present study analyzes the global and regional impacts of SAI using ARISE-SAI-1.5 (SAI-1.5) simulations with the Community Earth System Model 2. We calculated the regional thermosteric sea level under different scenarios. After validating our methodology for sea level components over the period 1995–2014, we determined changes in sea level variables under both SAI-1.5 and the underlying Shared Socioeconomic Pathway 2–4.5 (SSP2-4.5) relative to the reference period (1995–2014). In contrast to sea surface temperature, which under this SAI strategy should be maintained near 1.5 °C above preindustrial values, global SLR would continue increasing under SAI-1.5. However, SAI would significantly impact thermal expansion in SSP2-4.5 simulations, reducing the global long-term sea level trend from 3.7 ± 0.03 mm yr−1for SSP2-4.5–1.9 ± 0.04 mm yr−1for SAI-1.5, a 49% reduction. The associated ocean heat content is reduced from (2.0 ± 0.3) × 1022J yr−1under SSP2-4.5 to (1.17 ± 0.30) × 1022J yr−1under SAI, a 42% reduction. Additionally, SAI would impact the regional and global ocean by reducing the SLR rate. These findings underscore the potential of SAI as a climate intervention strategy with significant implications for sea level change. 
    more » « less
  3. null (Ed.)
    Observations from the past several decades indicate that the Southern Ocean is warming significantly and that Southern Hemisphere westerly winds have migrated southward and strengthened due to increasing atmospheric CO2 concentrations and/or ozone depletion. These changes have been linked to thinning of Antarctic ice shelves and marine terminating glaciers. Results from geologic drilling on Antarctica’s continental margins show late Neogene marine-based ice sheet variability, and numerical models indicate a fundamental role for oceanic heat in controlling this variability over at least the past 20 My. Although evidence for past ice sheet variability has been observed in marginal settings, sedimentological sequences from the outer continental shelf are required to evaluate the extent of past ice sheet variability and the role of oceanic heat flux in controlling ice sheet mass balance. International Ocean Discovery Program (IODP) Expedition 374 proposes a latitudinal and depth transect of six drill sites from the outer continental shelf and rise in the eastern Ross Sea to resolve the relationship between climatic/oceanic change and West Antarctic Ice Sheet (WAIS) evolution through the Neogene and Quaternary. This location was selected because numerical ice sheet models indicate that it is highly sensitive to changes in ocean heat flux and sea level. The proposed drilling is designed for optimal data-model integration, which will enable an improved understanding of the sensitivity of Antarctic Ice Sheet mass balance during warmer-than-present climates (e.g., the early Pliocene and middle Miocene). Additionally, the proposed transect links ice-proximal records from the inner Ross Sea continental shelf (e.g., ANDRILL sites) to deepwater Southwest Pacific drilling sites/targets to obtain an ice-proximal to far-field view of Neogene climate and Antarctic cryosphere evolution. The proposed scientific objectives directly address Ocean and Climate Challenges 1 and 2 of the 2013–2023 IODP Science Plan. Drilling Neogene and Quaternary strata from the Ross Sea continental shelf-to-rise sedimentary sequence is designed to achieve five scientific objectives: 1. Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates. 2. Reconstruct ice-proximal atmospheric and oceanic temperatures to identify past polar amplification and assess its forcings/feedbacks. 3. Assess the role of oceanic forcing (e.g., sea level and temperature) on Antarctic Ice Sheet stability/instability. 4. Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions. 5. Reconstruct eastern Ross Sea bathymetry to examine relationships between seafloor geometry, ice sheet stability/instability, and global climate. To achieve these objectives, we will (1) use data and models to reconcile intervals of maximum Neogene and Quaternary Antarctic ice advance with far-field records of eustatic sea level change; (2) reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; (3) reconstruct Neogene and Quaternary ice margin fluctuations in datable marine continental slope and rise records and correlate these records to existing inner continental shelf records; (4) examine relationships among WAIS stability/instability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and (5) constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. 
    more » « less
  4. Satellite images from Antarctica reveal important changes in the coastal icescape (fast-ice, icebergs and ice shelves) but these yearly changes and their impacts on the coastal circulation and ice shelf basal melt rates are not represented in the Earth System Models used to project future sea level rise. The impacts of these yearly icescape changes are thus investigated using a high-resolution regional ocean-ice shelves-sea ice coupled model of the Amundsen Sea (Antarctica). A set of nine semi-idealized experiments were designed to highlight the impacts of (a) the collapse of the Thwaites Glacier Tongue, (b) the disappearance of the Bear Ridge Iceberg Chain and tabular iceberg B22, and (c) presence/absence of a fast-ice cover between Thwaites and Pine Island ice shelves, in both cold and warm background hydrological conditions. The dataset features the results of the nine experiments and reveals changes in sea ice concentrations, coastal oceanic circulation and oceanic heat supply to the ice shelf cavities, ice shelf basal melt rates, hydrological conditions, and fluxes of heat/freshwater at the sea surface. These model results are archived in self-documented NetCDF files with the appropriate metadata for each variable. The dataset includes a 'readme file' providing an overview of the archive as well as additional information regarding the model results. 
    more » « less
  5. Observational evidence indicates that the West Antarctic Ice Sheet (WAIS) is losing mass at an accelerating rate. Impacts to global climate resulting from changing ocean circulation patterns due to increased freshwater runoff from Antarctica in the future could have significant implications for global heat transport, but to-date this topic has not been investigated using complex numerical models with realistic freshwater forcing. Here, we present results from a high resolution fully coupled ocean-atmosphere model (CESM 1.2) forced with runoff from Antarctica prescribed from a high resolution regional ice sheet-ice shelf model. Results from the regional simulations indicate a potential freshwater contribution from Antarctica of up to 1 m equivalent sea level rise by the end of the century under RCP 8.5 indicating that a substantial input of freshwater into the Southern Ocean is possible. Our high resolution global simulations were performed under IPCC future climate scenarios RCP 4.5 and 8.5. We will present results showing the impact of WAIS collapse on global ocean circulation, sea ice, air temperature, and salinity in order to assess the potential for abrupt climate change triggered by WAIS collapse. 
    more » « less