Probabilistic inference is fundamentally hard, yet many tasks require optimization on top of inference, which is even harder. We present a newoptimization-via-compilationstrategy to scalably solve a certain class of such problems. In particular, we introduce a new intermediate representation (IR), binary decision diagrams weighted by a novel notion ofbranch-and-bound semiring, that enables a scalable branch-and-bound based optimization procedure. This IR automaticallyfactorizesproblems through program structure andprunessuboptimal values via a straightforward branch-and-bound style algorithm to find optima. Additionally, the IR is naturally amenable tostaged compilation, allowing the programmer to query for optima mid-compilation to inform further executions of the program. We showcase the effectiveness and flexibility of the IR by implementing two performant languages that both compile to it: dappl and pineappl. dappl is a functional language that solves maximum expected utility problems with first-class support for rewards, decision making, and conditioning. pineappl is an imperative language that performs exact probabilistic inference with support for nested marginal maximum a posteriori (MMAP) optimization via staging.
more »
« less
Dependency-Aware Compilation for Surface Code Quantum Architectures
Practical applications of quantum computing depend on fault-tolerant devices with error correction. We study the problem of compiling quantum circuits for quantum computers implementing surface codes. Optimal or near-optimal compilation is critical for both efficiency and correctness. The compilation problem requires (1)mappingcircuit qubits to the device qubits and (2)routingexecution paths between interacting qubits. We solve this problem efficiently and near-optimally with a novel algorithm that exploits thedependency structureof circuit operations to formulate discrete optimization problems that can be approximated viasimulated annealing, a classic and simple algorithm. Our extensive evaluation shows that our approach is powerful and flexible for compiling realistic workloads.
more »
« less
- Award ID(s):
- 2212232
- PAR ID:
- 10642086
- Publisher / Repository:
- Association for Computing Machinery (ACM)
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 9
- Issue:
- OOPSLA1
- ISSN:
- 2475-1421
- Format(s):
- Medium: X Size: p. 57-84
- Size(s):
- p. 57-84
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper is about semantic regular expressions (SemREs). This is a concept that was recently proposed by Smore (Chen et al. 2023) in which classical regular expressions are extended with a primitive to query external oracles such as databases and large language models (LLMs). SemREs can be used to identify lines of text containing references to semantic concepts such as cities, celebrities, political entities, etc. The focus in their paper was on automatically synthesizing semantic regular expressions from positive and negative examples. In this paper, we study themembership testing problem. First, we present a two-pass NFA-based algorithm to determine whether a stringwmatches a SemRErinO(|r|2|w|2+ |r| |w|3) time, assuming the oracle responds to each query in unit time. In common situations, where oracle queries are not nested, we show that this procedure runs inO(|r|2|w|2) time. Experiments with a prototype implementation of this algorithm validate our theoretical analysis, and show that the procedure massively outperforms a dynamic programming-based baseline, and incurs a ≈ 2 × overhead over the time needed for interaction with the oracle. Second, we establish connections between SemRE membership testing and the triangle finding problem from graph theory, which suggest that developing algorithms which are simultaneously practical and asymptotically faster might be challenging. Furthermore, algorithms for classical regular expressions primarily aim to optimize their time and memory consumption. In contrast, an important consideration in our setting is to minimize the cost of invoking the oracle. We demonstrate an Ω(|w|2) lower bound on the number of oracle queries necessary to make this determination.more » « less
-
Dynamically field-programmable qubit arrays (DPQA) have recently emerged as a promising platform for quantum information processing. In DPQA, atomic qubits are selectively loaded into arrays of optical traps that can be reconfigured during the computation itself. Leveraging qubit transport and parallel, entangling quantum operations, different pairs of qubits, even those initially far away, can be entangled at different stages of the quantum program execution. Such reconfigurability and non-local connectivity present new challenges for compilation, especially in the layout synthesis step which places and routes the qubits and schedules the gates. In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements, representing cutting-edge experimental platforms. Within this architecture, we discretize the state space and formulate layout synthesis as a satisfiability modulo theories problem, which can be solved by existing solvers optimally in terms of circuit depth. For a set of benchmark circuits generated by random graphs with complex connectivities, our compiler OLSQ-DPQA reduces the number of two-qubit entangling gates on small problem instances by 1.7x compared to optimal compilation results on a fixed planar architecture. To further improve scalability and practicality of the method, we introduce a greedy heuristic inspired by the iterative peeling approach in classical integrated circuit routing. Using a hybrid approach that combined the greedy and optimal methods, we demonstrate that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture, resulting in 5.1X less two-qubit gates for 90 qubit quantum circuits. These methods enable programmable, complex quantum circuits with neutral atom quantum computers, as well as informing both future compilers and future hardware choices.more » « less
-
Chakraborty, Supratik; Jiang, Jie-Hong Roland (Ed.)Quantum Computing (QC) is a new computational paradigm that promises significant speedup over classical computing in various domains. However, near-term QC faces numerous challenges, including limited qubit connectivity and noisy quantum operations. To address the qubit connectivity constraint, circuit mapping is required for executing quantum circuits on quantum computers. This process involves performing initial qubit placement and using the quantum SWAP operations to relocate non-adjacent qubits for nearest-neighbor interaction. Reducing the SWAP count in circuit mapping is essential for improving the success rate of quantum circuit execution as SWAPs are costly and error-prone. In this work, we introduce a novel circuit mapping method by combining incremental and parallel solving for Boolean Satisfiability (SAT). We present an innovative SAT encoding for circuit mapping problems, which significantly improves solver-based mapping methods and provides a smooth trade-off between compilation quality and compilation time. Through comprehensive benchmarking of 78 instances covering 3 quantum algorithms on 2 distinct quantum computer topologies, we demonstrate that our method is 26× faster than state-of-the-art solver-based methods, reducing the compilation time from hours to minutes for important quantum applications. Our method also surpasses the existing heuristics algorithm by 26% in SWAP count.more » « less
-
Numerous quantum algorithms require the use of quantum error correction to overcome the intrinsic unreliability of physical qubits. However, quantum error correction imposes a unique performance bottleneck, known asT-complexity, that can make an implementation of an algorithm as a quantum program run more slowly than on idealized hardware. In this work, we identify that programming abstractions for control flow, such as the quantum if-statement, can introduce polynomial increases in theT-complexity of a program. If not mitigated, this slowdown can diminish the computational advantage of a quantum algorithm. To enable reasoning about the costs of control flow, we present a cost model that a developer can use to accurately analyze theT-complexity of a program under quantum error correction and pinpoint the sources of slowdown. To enable the mitigation of these costs, we present a set of program-level optimizations that a developer can use to rewrite a program to reduce itsT-complexity, predict theT-complexity of the optimized program using the cost model, and then compile it to an efficient circuit via a straightforward strategy. We implement the program-level optimizations in Spire, an extension of the Tower quantum compiler. Using a set of 11 benchmark programs that use control flow, we empirically show that the cost model is accurate, and that Spire’s optimizations recover programs that are asymptotically efficient, meaning their runtimeT-complexity under error correction is equal to their time complexity on idealized hardware. Our results show that optimizing a program before it is compiled to a circuit can yield better results than compiling the program to an inefficient circuit and then invoking a quantum circuit optimizer found in prior work. For our benchmarks, only 2 of 8 tested quantum circuit optimizers recover circuits with asymptotically efficientT-complexity. Compared to these 2 optimizers, Spire uses 54×–2400× less compile time.more » « less
An official website of the United States government
