skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: The renaissance of lateral power devices for high voltage applications
Power semiconductor devices, spanning blocking voltages from a few volts to tens of thousands of volts, are critical for efficient energy conversion in numerous applications and serve as key enablers of carbon neutrality. These devices can be realized in either vertical or lateral architectures, with the former preferred for high-power discrete devices and the latter offering high switching speeds and monolithic circuit integration. While lateral structures have long been utilized in low- and medium-voltage applications, recent advancements in multidimensional device architectures and (ultra-)wide-bandgap semiconductor materials have revitalized their potential for high-voltage applications. Multidimensional architectures, such as superjunction and multichannel designs, enable uniform electric field distribution for voltage scaling and, at the same time, boost carrier concentrations to enhance current capacity. The application of these architectures in gallium nitride and gallium oxide has led to the demonstration of multi-kilovolt lateral devices with diverse designs, achieving breakdown voltages exceeding 10 000 V, average electric fields up to 4.7 MV/cm, high-temperature operation up to 250 °C, and specific on-resistances at least 2–3 times lower than similarly rated vertical devices. Such advantages can be further enhanced through the implementation of monolithic bidirectional devices, a unique capability of the lateral architecture that enables the replacement of four vertical devices. This review provides an overview of multidimensional high-voltage lateral devices, emphasizing their fundamental device physics to inspire further applications across various material systems. The theoretical performance limits of multidimensional lateral devices are also analyzed. In addition, we discuss critical knowledge gaps that must be addressed for industrial adoption, highlighting emerging research opportunities in this rapidly evolving field.  more » « less
Award ID(s):
2230412
PAR ID:
10642140
Author(s) / Creator(s):
; ;
Publisher / Repository:
APL
Date Published:
Journal Name:
APL Electronic Devices
Volume:
1
Issue:
3
ISSN:
2995-8423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Power devices are highly desirable to possess excellent avalanche and short-circuit (or surge-current) robustness for numerous power electronics applications like automotive powertrains, electric grids, motor drives, among many others. Current commercial GaN power device, the lateral GaN high-electron-mobility transistor (HEMT), is known to have no avalanche capability and very limited short-circuit robustness. These limitations have become a roadblock for penetration of GaN devices in many industrial power applications. Recently, through collaborations with NexGen Power Systems (NexGen), Inc., we have demonstrated breakthrough avalanche, surge-current and short-circuit robustness in NexGen’s vertical GaN p-n diodes and fin-shape junction-gate field-effect-transistors (Fin-JFETs). These large-area GaN diodes and Fin-JFETs were manufactured in NexGen’s 100 mm GaN-on-GaN fab. The demonstrated avalanche, surge-current and short-circuit capabilities are comparable or even superior to Si and SiC power devices. Additionally, vertical GaN Fin-JFETs were found to fail to open-circuit under avalanche and short-circuit conditions, which is highly desirable for the system safety. This talk reviews the key robustness results of vertical GaN power devices and unveils the enabling device physics. Fundamentally, these results signify that, in contrast to some popular belief, GaN devices with appropriate designs can achieve excellent robustness and thereby encounter no barriers for applications in electric vehicles, grids, renewable processing, and industrial motor drives. 
    more » « less
  2. Gallium oxide (Ga2O3) is an emerging wide bandgap semiconductor with potential applications in power electronics and high power optical systems where gallium nitride and silicon carbide have already demonstrated unique advantages compared to gallium arsenide and silicon-based devices. Establishing the stability and breakdown conditions of these next-generation materials is critical to assessing their potential performance in devices subjected to large electric fields. Here, using systematic laser damage performance tests, we establish that β-Ga2O3 has the highest lifetime optical damage performance of any conductive material measured to date, above 10 J/cm2 (1.4 GW/cm2). This has direct implications for its use as an active component in high power laser systems and may give insight into its utility for high-power switching applications. Both heteroepitaxial and bulk β-Ga2O3 samples were benchmarked against a heteroepitaxial gallium nitride sample, revealing an order of magnitude higher optical lifetime damage threshold for β-Ga2O3. Photoluminescence and Raman spectroscopy results suggest that the exceptional damage performance of β-Ga2O3 is due to lower absorptive defect concentrations and reduced epitaxial stress. 
    more » « less
  3. While the properties of β-Ga2O3 continue to be extensively studied for high-power applications, the effects of strong electric fields on the Ga2O3 microstructure and, in particular, the impact of electrically active native point defects have been relatively unexplored. We used cathodoluminescence point spectra and hyperspectral imaging to explore possible nanoscale movements of electrically charged defects in Ga2O3 vertical trench power diodes and observed the spatial rearrangement of optically active defects under strong reverse bias. These observations suggest an unequal migration of donor-related defects in β-Ga2O3 due to the applied electric field. The atomic rearrangement and possible local doping changes under extreme electric fields in β-Ga2O3 demonstrate the potential impact of nanoscale device geometry in other high-power semiconductor devices. 
    more » « less
  4. The wide bandgap semiconductors SiC and GaN are commercialized for power electronics and for visible to UV light-emitting diodes in the case of the GaN/InGaN/AlGaN materials system. For power electronics applications, SiC MOSFETs (metal–oxide–semiconductor field effect transistors) and rectifiers and GaN/AlGaN HEMTs and vertical rectifiers provide more efficient switching at high-power levels than do Si devices and are now being used in electric vehicles and their charging infrastructure. These devices also have applications in more electric aircraft and space missions where high temperatures and extreme environments are involved. In this review, their inherent radiation hardness, defined as the tolerance to total doses, is compared to Si devices. This is higher for the wide bandgap semiconductors, due in part to their larger threshold energies for creating defects (atomic bond strength) and more importantly due to their high rates of defect recombination. However, it is now increasingly recognized that heavy-ion-induced catastrophic single-event burnout in SiC and GaN power devices commonly occurs at voltages ∼50% of the rated values. The onset of ion-induced leakage occurs above critical power dissipation within the epitaxial regions at high linear energy transfer rates and high applied biases. The amount of power dissipated along the ion track determines the extent of the leakage current degradation. The net result is the carriers produced along the ion track undergo impact ionization and thermal runaway. Light-emitting devices do not suffer from this mechanism since they are forward-biased. Strain has also recently been identified as a parameter that affects radiation susceptibility of the wide bandgap devices. 
    more » « less
  5. The wide bandgap semiconductors SiC and GaN are commercialized for power electronics and for visible to UV light-emitting diodes in the case of the GaN/InGaN/AlGaN materials system. For power electronics applications, SiC MOSFETs (metal–oxide–semiconductor field effect transistors) and rectifiers and GaN/AlGaN HEMTs and vertical rectifiers provide more efficient switching at high-power levels than do Si devices and are now being used in electric vehicles and their charging infrastructure. These devices also have applications in more electric aircraft and space missions where high temperatures and extreme environments are involved. In this review, their inherent radiation hardness, defined as the tolerance to total doses, is compared to Si devices. This is higher for the wide bandgap semiconductors, due in part to their larger threshold energies for creating defects (atomic bond strength) and more importantly due to their high rates of defect recombination. However, it is now increasingly recognized that heavy-ion-induced catastrophic single-event burnout in SiC and GaN power devices commonly occurs at voltages ∼50% of the rated values. The onset of ion-induced leakage occurs above critical power dissipation within the epitaxial regions at high linear energy transfer rates and high applied biases. The amount of power dissipated along the ion track determines the extent of the leakage current degradation. The net result is the carriers produced along the ion track undergo impact ionization and thermal runaway. Light-emitting devices do not suffer from this mechanism since they are forward-biased. Strain has also recently been identified as a parameter that affects radiation susceptibility of the wide bandgap devices. 
    more » « less