skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrochemical Liquid‐Liquid‐Solid Growth of Ag‐In Crystals with Liquid Indium Alloy Electrodes
Abstract Synthesis of intermetallic crystals by electrodeposition of Ag from alkaline aqueous electrolytes containing AgCN onto liquid metal electrodes via an electrochemical liquid‐liquid‐solid (ec‐LLS) process has been performed. X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy were performed to identify crystalline products. Ec‐LLS experiments performed with pure liquid Hg and Ga electrodes resulted in the formation of polycrystalline Ag2Ga and Ag2Hg3. Experiments performed with In‐containing liquid metals preferentially yielded Ag9In4and AgIn2products with liquid Hg0.35In0.65and Ga0.86In0.14, respectively. The product distribution with liquid Hg0.35In0.65depended on the level of Ag supersaturation during the electrodeposition. A mechanism that accounts for the aforementioned observations is presented and discussed. This work described the formation of Ag−In intermetallic phases by the isothermal electroreduction of Ag into different liquid metal solvents via ec‐LLS. Electrodeposition of Ag into a pure Ga or pure Hg liquid metal pool yielded precisely the compounds predicted from isothermal cross‐sections of the respective binary phase diagrams. These compounds were not found when using liquid Hg or Ga containing appreciable In. The smaller enthalpy of formation for AgIn2was consistent with its synthesis in Ga0.86In0.14. However, the observed product of Ag9In4in Hg‐containing liquid metals could not be rationalized solely from thermodynamic factors. Instead, this observation was consistent with a kinetic pathway based on the lability of Hg‐metal bonds and nearly identical crystal structures of Ag9In4and Ag2Hg3. Site exchange of Hg for In is consistent with our prior observations[23]of In exchange into Hg−Pd structures during Pd electrodeposition. This mechanism is not based on any direct role of electrochemistry other than aspects that dictate the operative supersaturation of the metal solute.  more » « less
Award ID(s):
2106315
PAR ID:
10642317
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemElectroChem
Volume:
11
Issue:
14
ISSN:
2196-0216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrodeposition of Pd from alkaline baths containing Pd(CN) 2 and KCN with liquid metal electrodes has been performed. Data are presented that Pd dissolved into and reacted with the liquid metal electrodes via an electrochemical liquid-liquid-solid (ec-LLS) process. HgPd crystals were obtained with liquid Hg electrodes. On solid In electrodes, In 7 Pd 3 was exclusively formed. In contrast, InPd was the primary product with Hg 1-x In x alloy electrodes. X-ray diffraction, scanning electron microscopy, and electron backscattering diffraction show that the materials were not a pure phase, as minor components of HgPd and In 7 Pd 3 were observed for various liquid Hg-In compositions. A mechanism is proposed where the InPd intermetallic forms through an intermediate phase of HgPd by the substitution of In atoms for the Hg sites of the unit cell. This study thus motivates further exploration of Hg 1-x In x as a versatile medium for intermetallic synthesis by ec-LLS. 
    more » « less
  2. Electrosynthesis of single-crystalline metallic and intermetallic particles with a preferred orientation onto liquid metal electrodes has been performed. Liquid gallium electrodes immersed in aqueous alkaline electrolytes without any molecular additive or external solid seeding substrates were used to electroreduce separately Pb2+, Bi3+, Pd2+, and Mn2+. The crystallinity, composition, and orientation of the electrodeposition products were characterized by using scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Electrodeposition of Pb and Bi results in the incipient formation of two-dimensional (2D) nuclei that subsequently direct the growth of Pb and Bi single crystals along the most close-packed [111] and [0001] directions, respectively. The absence of any intervening surface oxides and a low electroreduction flux are necessary to avoid polycrystalline dendrite formation. Under comparable conditions, the electrodeposition of Pd and Mn results in single-crystalline intermetallic particles at the interface. Each crystal exhibits a preferred orientation consistent with the unique atomic packing of the near-surface region of the liquid Ga. The presented study suggests a new concept in electrodeposition processes where the liquid metal structure imparts quasi-epitaxial growth in a system in which the electrode material specifically has no crystallinity or long-range order. This study is thus the first demonstration of highly oriented electrodeposition at a liquid/liquid interface under ambient conditions, highlighting the unique solvation environment of liquid metal interfaces for forming thin metallic and intermetallic films. 
    more » « less
  3. The electrochemical reactivity and suitability of hexachlorodisilane and tetrakis(trichlorosilyl)silane as Si ec-LLS electrodeposition precursors in several electrolyte solutions have been investigated. Voltammetric data indicated that perchlorinated silanes exhibit mechanistically similar electrochemical responses as SiCl4, regardless of the Si–Si bond content in the precursor. The voltammetric responses were a strong function of the concentration of the precursor, indicating the participation of electrogenerated intermediates during the reduction and concomitant Si electrodeposition. Variation of the anion in the supporting electrolyte was found to be a critical factor for the thermal and chemical stability of the precursor bath. A combination of chronoamperometry and electron microscopy data were used to study the deposition efficiency specifically for hexachlorodisilane. The faradaic efficiency was low, regardless of overpotential or the composition of the electrolyte. Cumulatively, these data show that while larger chlorosilanes can be used for conventional Si electrodeposition over a wider range of conditions, their chemical instability and propensity for low faradaic efficiency limit their utility as reagents relative to SiCl4for Si electrodeposition by ec-LLS. 
    more » « less
  4. Uniform and porous CoNi 2 Se 4 was successfully synthesized by electrodeposition onto a composite electrode comprising reduced graphene oxide (rGO) anchored on a Ni foam substrate (prepared hydrothermally). This CoNi 2 Se 4 –rGO@NF composite electrode has been employed as an electrocatalyst for the direct oxidation of glucose, thereby acting as a high-performance non-enzymatic glucose sensor. Direct electrochemical measurement with the as-prepared electrode in 0.1 M NaOH revealed that the CoNi 2 Se 4 –rGO nanocomposite has excellent electrocatalytic activity towards glucose oxidation in an alkaline medium with a sensitivity of 18.89 mA mM −1 cm −2 and a wide linear response from 1 μM to 4.0 mM at a low applied potential of +0.35 V vs. Ag|AgCl. This study also highlights the effect of decreasing the anion electronegativity on enhancing the electrocatalytic efficiency by lowering the potential needed for glucose oxidation. The catalyst composite also exhibits high selectivity towards glucose oxidation in the presence of several interferents normally found in physiological blood samples. A low glucose detection limit of 0.65 μM and long-term stability along with a short response time of approximately 4 seconds highlights the promising performance of the CoNi 2 Se 4 –rGO@NF electrode for non-enzymatic glucose sensing with high precision and reliability. 
    more » « less
  5. The growth of monoclinic phase‐pure gallium oxide (β‐Ga2O3) layers by metal–organic chemical vapor deposition on c‐plane sapphire and aluminum nitride (AlN) templates using silicon‐oxygen bonding (SiOx) as a phase stabilizer is reported. The β‐Ga2O3layers are grown using triethylgallium, oxygen, and silane for gallium, oxygen, and silicon precursors, respectively, at 700 °C, with and without silane flow in the process. The samples grown on sapphire with SiOxphase stabilization show a notable change from samples without phase stabilization in the roughness and resistivity, from 16.2 to 4.2 nm and from 85.82 to 135.64 Ω cm, respectively. X‐ray diffraction reveals a pure‐monoclinic phase, and Raman spatial mapping exhibits higher tensile strain in the films in the presence of SiOx. The β‐Ga2O3layers grown on an AlN template, using the same processes as for sapphire, show an excellent epitaxial relationship between β‐Ga2O3and AlN and have a significant change in β‐Ga2O3surface morphology. 
    more » « less