skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bipyramidal Nanocrystals of Noble Metals: From Synthesis to Applications
Abstract Shape control has been a major theme of nanocrystal research in terms of synthesis, property tailoring, and optimization of performance in a variety of applications. Among the possible shapes, bipyramids are unique owing to their symmetry, planar defects, and exposed facets. In this article, we focus on the colloidal synthesis of noble‐metal nanocrystals featuring a triangular bipyramidal shape, together with highlights of their properties and applications. We start with a brief discussion of the general classification and requirements for the nucleation and growth of bipyramidal nanocrystals, followed by specific aspects regarding the synthetic methods with a focus on the roles of reduction, etching, and capping, as well as controls of facet, size, aspect ratio, and corner truncation. In the end, we illustrate how these aspects affect the properties of bipyramidal nanocrystals for plasmonic and catalytic applications, together with future perspectives.  more » « less
Award ID(s):
2002653 2105602
PAR ID:
10642336
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
30
Issue:
56
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Surface capping agents have been extensively used to control the evolution of seeds into nanocrystals with diverse but well‐controlled shapes. Here we offer a comprehensive review of these agents, with a focus on the mechanistic understanding of their roles in guiding the shape evolution of metal nanocrystals. We begin with a brief introduction to the early history of capping agents in electroplating and bulk crystal growth, followed by discussion of how they affect the thermodynamics and kinetics involved in a synthesis of metal nanocrystals. We then present representative examples to highlight the various capping agents, including their binding selectivity, molecular‐level interaction with a metal surface, and impacts on the growth of metal nanocrystals. We also showcase progress in leveraging capping agents to generate nanocrystals with complex structures and/or enhance their catalytic properties. Finally, we discuss various strategies for the exchange or removal of capping agents, together with perspectives on future directions. 
    more » « less
  2. Abstract In addition to the conventional knobs such as composition, size, shape, and defect structure, the crystal structure (or phase) of metal nanocrystals offers a new avenue for engineering their properties. Various strategies have recently been developed for the fabrication of colloidal metal nanocrystals in metastable phases different from their bulk counterparts. With a focus on noble metals, we begin with a brief introduction to their atomic packing, followed by a discussion about five major synthetic approaches to their colloidal nanocrystals in unconventional phases. We then highlight the success of synthesis in terms of mechanistic insights and experimental controls, as well as the enhanced catalytic properties. We end this Minireview with perspectives on the remaining issues and future opportunities. 
    more » « less
  3. null (Ed.)
    Peroxidase mimics of nanoscale materials as alternatives to natural peroxidases have found widespread uses in biomedicine. Among various types of peroxidase mimics, platinum-group metal (PGM) nanocrystals have drawn considerable attention in recent years due to their superior properties. Particularly, PGM nanocrystals display high catalytic efficiencies, allow for facile surface modifications, and possess excellent stabilities. This feature article summarizes our recent work on development of PGM nanocrystals as peroxidase mimics and exploration of their applications in in vitro diagnostics. We begin with a brief introduction to controlled synthesis of PGM nanocrystals in solution phase. We then elaborate on a variety of physicochemical parameters that can be carefully tuned to optimize the peroxidase-like properties of PGM nanocrystals. Then, we highlight the applications of PGM nanocrystals in different in vitro diagnostic platforms. We conclude this article with personal perspectives on future research directions in this emerging field, where challenges and opportunities are remarked. 
    more » « less
  4. Abstract Nature is capable of storing solar energy in chemical bonds via photosynthesis through a series of C–C, C–O and C–N bond-forming reactions starting from CO2and light. Direct capture of solar energy for organic synthesis is a promising approach. Lead (Pb)-halide perovskite solar cells reach 24.2% power conversion efficiency, rendering perovskite a unique type material for solar energy capture. We argue that photophysical properties of perovskites already proved for photovoltaics, also should be of interest in photoredox organic synthesis. Because the key aspects of these two applications are both relying on charge separation and transfer. Here we demonstrated that perovskites nanocrystals are exceptional candidates as photocatalysts for fundamental organic reactions, for example C–C, C–N and C–O bond-formations. Stability of CsPbBr3in organic solvents and ease-of-tuning their bandedges garner perovskite a wider scope of organic substrate activations. Our low-cost, easy-to-process, highly-efficient, air-tolerant and bandedge-tunable perovskites may bring new breakthrough in organic chemistry. 
    more » « less
  5. Chalcogenide perovskites have increasingly garnered attention in recent years for various optoelectronic applications. While distorted perovskites such as BaZrS3 are primarily being explored for photovoltaic applications, hexagonal ABS3 compounds such as BaTiS3 have been proposed for optical devices and thermoelectrics due to their intriguing properties arising from their quasi-1D structure, which imparts anisotropy in properties. However, other members of the hexagonal family remain largely unexplored, likely due to their harsh synthesis conditions. In this report, we synthesize nanocrystals of relatively unexplored members of the hexagonal ABX3 chalcogenides family, which also possess a similar rod-like morphology and could be useful for polarized photodetection applications. Specifically, we modified our previously reported sulfide perovskite nanoparticle synthesis route to produce BaNbS3 and BaTaS3 nanocrystals. Furthermore, we explored selenium and selenourea as precursors to synthesize selenide hexagonal nanocrystals such as BaTiSe3 and BaZrSe3, as well as other selenide analogues like Ba3Nb2Se9 and Ba3Ta2Se9. This marks the first report of nanocrystal synthesis for the BaMSe3 family, where M is an early transition metal. 
    more » « less