Abstract MAX phases, ternary transition metal carbides and nitrides, represent one of the largest families of layered materials. They also serve as precursors to MXenes, two‐dimensional (2D) carbides and nitrides. The possibility of oxygen substitution in the carbon sublattice, forming oxycarbide MAX phases and MXenes, was recently reported using secondary ion mass spectrometry. However, while the effect of oxygen substitution on the properties of MXenes was investigated, little is known about its effect on the properties of MAX phases. Here, we explore the influence of process parameters (e.g., particle size, synthesis temperature, annealing time, etc.) and oxygen presence in the lattice on the oxidation resistance of Ti3AlC2MAX phase powders. We show that X‐ray diffraction measurements can identify oxygen substitution and assist in selecting MAX precursors to synthesize stable and highly conductive MXenes. Eliminating the substitutional oxygen from the MAX phase lattice increases the onset of oxidation by 400°C, from approximately 490 to 890°C. Finally, we discuss the impact of oxygen substitution in the MAX phases on the synthesis of MXenes and their resulting properties.
more »
« less
High‐Pressure Synthesis and Recovery of Single Crystals of the Metastable Manganese Carbide, MnC x
Abstract Transition metal carbides find widespread use throughout industry due to their high strength and resilience under extreme conditions. However, they remain largely limited to compounds formed from the early d‐block elements, since the mid‐to‐late transition metals do not form thermodynamically stable carbides. We report here the high‐pressure bulk synthesis of large single crystals of a novel metastable manganese carbide compound, MnCx(P63/mmc), which adopts the anti‐NiAs‐type structure with significant substoichiometry at the carbon sites. We demonstrate how synthesis pressure modulates the carbon loading, with ~40 % occupancy being achieved at 9.9 GPa.
more »
« less
- Award ID(s):
- 2237478
- PAR ID:
- 10642357
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 30
- Issue:
- 42
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MXenes, a new class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted much attention due to their outstanding properties. Here, we report the broadband spatial self‐phase modulation of Ti2CTxMXene nanosheets dispersed in deionized water in the visible to near‐infrared regime, highlighting the broadband nonlinear optical (NLO) response of Ti2CTxMXene. Using ultrafast pulsed laser excitation, the nonlinear refractive indexn2and the third‐order nonlinear susceptibilityof Ti2CTxMXene were measured to be ∼10−13m2/W and ∼ 10−10esu, respectively. Leveraging the large optical nonlinearity of Ti2CTxMXene, an all‐optical modulator in the visible regime was fabricated based on the spatial cross‐phase modulation effect. This work suggests that 2D MXenes are ideal broadband NLO materials with excellent prospects in NLO applications. imagemore » « less
-
Superconductivity and Pronounced Electron‐Phonon Coupling in Rock‐Salt Al 1−x O 1−x and Ti 1−x O 1−xAbstract The highest ambient‐pressure Tc among binary compounds is 40 K (MgB2). Higher Tc is achieved in high‐pressure hydrides or multielement cuprates. Alternatively, are explored superconducting properties of binary, metastable sub‐oxides, that may emerge under extremely low oxygen partial pressure. The emphasis is on the rock‐salt structure, which is known to promote superconductivity, and exploring AlO, ScO, TiO, and NbO. Dynamic lattice stability is achieved by introducing metal and oxygen vacancies in the fashion of Nb1−xO1−x‐type structure (x = ¼). The electron‐phonon (e‐ph) coupling is remarkably large in Al1−xO1−xand Ti1−xO1−x(λ ≈ 2 at x = ¼), with Tc ≈ 35 K according to the Allen–Dynes equation. Significantly, the coupling strength is comparable to that in high‐pressure hydrides, yet, in contrast to hydrides and MgB2, the coupling is largely driven by low frequency phonons. Sc1−xO1−xand Nb1−xO1−xshow significantly smaller λ and Tc. Further, hydrogen intercalation to boost λ and Tc is investigated. Only Ti1−x(O1−xHx) and Nb1−x(O1−xHx) are dynamically stable upon intercalation, where H, respectively, decreases and increases Tc. The effect of H doping on electronic structure and Tc is discussed. Altogether, the study suggests that metal sub‐oxides are promising compounds to achieve strong e‐ph coupling at ambient pressure.more » « less
-
Electrical resistivity measurements were performed on single crystals of URu2–xOsxSi2up tox= 0.28 under hydrostatic pressure up toP= 2 GPa. As the Os concentration,x, is increased, 1) the lattice expands, creating an effective negative chemical pressurePch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressurePcis required to induce the HO→LMAFM phase transition. We compare the behavior of theT(x,P) phase boundary reported here for the URu2-xOsxSi2system with previous reports of enhanced HO in URu2Si2upon tuning withPor similarly in URu2–xFexSi2upon tuning with positivePch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2. We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metald-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2. Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and thed-electron states of Ru and its isoelectronic Fe and Os substituents in URu2Si2.more » « less
-
Abstract Measurements of riverine dissolved inorganic carbon, total alkalinity (AT), pH, and the partial pressure of carbon dioxide (pCO2) can provide insights into the biogeochemical function of rivers, including the processes that control biological production, chemical speciation, and air‐water CO2fluxes. The complexity created by these combined processes dictates that studies of inorganic carbon be made over broad spatial and temporal scales. Time‐series data like these are relatively rare, however, because sampling and measurements are labor intensive and, for some variables, good measurement quality is difficult to achieve (e.g., pH). In this study, spectrophotometric pH and ATwere quantified with high precision and accuracy at biweekly to monthly intervals over a four‐year period (2018–2021) along 216 km of the Upper Clark Fork River (UCFR) in the northern Rocky Mountains, USA. We use these and other time‐series data to provide insights into the processes that control river inorganic carbon, with a focus onpCO2and air‐water CO2fluxes. We found that seasonal snowmelt runoff increasedpCO2and that expected increase and decrease ofpCO2due to seasonal heating and cooling were likely offset by an increase and loss of algal biomass, respectively. Overall, the UCFR was a small net source (0.08 ± 0.14 mol m−2 d−1) of CO2to the atmosphere over the four‐year study period with highly variable annual averages (0.0–0.10 mol m−2 d−1). The seasonally correlated, offsetting mechanisms highlight the challenges in predictingpCO2and air‐water CO2fluxes in rivers.more » « less
An official website of the United States government
