skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of Natural‐Product‐Inspired ABCB1 Inhibitors Through Regioselective Tryptophan C3‐Benzylation
Abstract The emergence of drug resistance in cancer cells eventually causing relapse is a serious threat that demands new advances. Upregulation of the ATP‐dependent binding cassette (ABC) transporters, such as ABCB1, significantly contributes to the emergence of drug resistance in cancer. Despite more than 30 years of therapeutic discovery, and several generations of inhibitors against P‐gp, the search for effective agents that minimize toxicity to human cells, while maintaining efflux pump inhibition is still underway. Leads derived from natural product scaffolds are well‐known to be effective in various therapeutic approaches. Inspired by the biosynthetic pathway to Nocardioazine A, a marine alkaloid known to inhibit the P‐gp efflux pump in cancer cells, we devised a regioselective pathway to create structurally unique indole‐C3‐benzylcyclo‐L‐Trp‐L‐Trp diketopiperazines (DKPs). Using bat cells as a model to derive effective ABCB1 inhibitors for targeting human P‐gp efflux pumps, we have recently identifiedexo‐C3‐N‐Dbn‐Trp2 (13)as a lead ABCB1 inhibitor. This C3‐benzylated lead inhibited ABCB1 better than Verapamil.[21]Additionally,C3‐N‐Dbn‐Trp2restored chemotherapy sensitivity in drug‐resistant human cancer cells and had no adverse effect on cell proliferation in cell cultures. For a clearer structure‐activity relationship, we developed a broader screen to test C3‐functionalized pyrroloindolines as ABCB1 inhibitors and observed that C3‐benzylation is outperforming respective isoprenylated derivatives. Results arising from the molecular docking studies indicate that the interactions at the access tunnel between ABCB1 and the inhibitor result in a powerful predictor for the efficacy of the inhibitor. Based on fluorescence‐based assays, we conclude that the most efficacious inhibitor is thep‐cyano‐derivedexo‐C3‐N‐Dbn‐Trp2 (33 a), closely followed by thep‐nitro substituted analogue. By combining assay results with molecular docking studies, we further correlate that the predictions based on the inhibitor interactions at the access tunnel provide clues about the design of improved ABCB1 inhibitors. As it has been well documented that ABCB1 itself is powerfully engaged in multi‐drug resistance, this work lays the foundation for the design of a new class of inhibitors based on the endogenous amino acid‐derivedcyclo‐L‐Trp‐L‐Trp DKP scaffold.  more » « less
Award ID(s):
1709655
PAR ID:
10642387
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
30
Issue:
63
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chemotherapy-induced drug resistance remains a major cause of cancer recurrence and patient mortality. ATP binding cassette subfamily B member 1 (ABCB1) transporter overexpression in tumors contributes to resistance, yet current ABCB1 inhibitors have been unsuccessful in clinical trials. To address this challenge, we propose a new strategy using tryptophan as a lead molecule for developing ABCB1 inhibitors. Our idea stems from our studies on bat cells, as bats have low cancer incidences and high ABCB1 expression. We hypothesized that potential ABCB1 substrates in bats could act as competitive inhibitors in humans. By molecular simulations of ABCB1-substrate interactions, we generated a benzylatedCyclo-tryptophan (C3N-Dbn-Trp2) that inhibits ABCB1 activity with efficacy comparable to or better than the classical inhibitor, verapamil. C3N-Dbn-Trp2 restored chemotherapy sensitivity in drug-resistant human cancer cells with no adverse effect on cell proliferation. Our unique approach presents a promising lead toward developing effective ABCB1 inhibitors to treat drug-resistant cancers. 
    more » « less
  2. Nocardioazines A and B are prenylated, bioactive pyrroloindoline natural products, isolated from Nocardiopsis, with a desymmetrized cyclo-D-Trp-D-Trp DKP core. Based on our deeper biosynthetic understanding, a biomimetic total synthesis of (+)-nocardioazine B is accomplished in merely seven steps and 23.2% overall yield. This pathway accesses regio- and stereoselectively C3-isoprenylated analogs of (+)-nocardioazine B, using the same number of steps and in similar efficiency. The successful strategy mandated that the biomimetic C3-prenylation step be executed early. The use of an unprotected carboxylic acid of Trp led to high diastereoselectivity toward formation of key intermediates exo-12a, exo-12b, and exo-12c (>19:1). Evidence shows that N1methylation causes the prenylation reaction to bifurcate away to result in a C2-normal-prenylated isomer. Nocardioazine A, possessing an isoprenoidal-epoxide bridge, inhibits P-glycoprotein (P-gp)-mediated membrane efflux, in multidrug-resistant mammalian colon cancer cells. As several P-gp inhibitors have failed due to their toxicity effects, endogenous amino-acid-derived noncytotoxic inhibitors (from the nocardioazine core) are worthy leads toward a rejuvenated strategy against resistant carcinomas. This total synthesis provides direct access to Trp-derived isoprenylated DKP natural products and their derivatives. 
    more » « less
  3. Abstract P‐glycoprotein (P‐gp, ABCB1) is a well‐researched ATP‐binding cassette (ABC) drug efflux transporter linked to the development of cancer multidrug resistance (MDR). Despite extensive studies, approved therapies to safely inhibit P‐gp in clinical settings are lacking, necessitating innovative strategies beyond conventional inhibitors or antibodies to reverse MDR. Photodynamic therapy is a globally approved cancer treatment that uses targeted, harmless red light to activate non‐toxic photosensitizers, confining its cytotoxic photochemical effects to disease sites while sparing healthy tissues. This study demonstrates that photodynamic priming (PDP), a sub‐cytotoxic photodynamic therapy process, can inhibit P‐gp function by modulating cellular respiration and ATP levels in light accessible regions. Using chemoresistant (VBL‐MDA‐MB‐231) and chemosensitive (MDA‐MB‐231) triple‐negative breast cancer cell lines, we showed that PDP decreases mitochondrial membrane potential by 54.4% ± 30.4 and reduces mitochondrial ATP production rates by 94.9% ± 3.46. Flow cytometry studies showed PDP can effectively improve the retention of P‐gp substrates (calcein) by up to 228.4% ± 156.3 in chemoresistant VBL‐MDA‐MB‐231 cells, but not in chemosensitive MDA‐MB‐231 cells. Further analysis revealed that PDP did not alter the cell surface expression level of P‐gp in VBL‐MDA‐MB‐231 cells. These findings indicate that PDP can reduce cellular ATP below the levels that is required for the function of P‐gp and improve intracellular substrate retention. We propose that PDP in combination with chemotherapy drugs, might improve the efficacy of chemotherapy and overcome cancer MDR. 
    more » « less
  4. Abstract Membrane efflux pumps play a major role in bacterial multidrug resistance. The tripartite multidrug efflux pump system fromEscherichia coli, AcrAB-TolC, is a target for inhibition to lessen resistance development and restore antibiotic efficacy, with homologs in other ESKAPE pathogens. Here, we rationalize a mechanism of inhibition against the periplasmic adaptor protein, AcrA, using a combination of hydrogen/deuterium exchange mass spectrometry, cellular efflux assays, and molecular dynamics simulations. We define the structural dynamics of AcrA and find that an inhibitor can inflict long-range stabilisation across all four of its domains, whereas an interacting efflux substrate has minimal effect. Our results support a model where an inhibitor forms a molecular wedge within a cleft between the lipoyl and αβ barrel domains of AcrA, diminishing its conformational transmission of drug-evoked signals from AcrB to TolC. This work provides molecular insights into multidrug adaptor protein function which could be valuable for developing antimicrobial therapeutics. 
    more » « less
  5. Abstract Histone Deacetylases (HDACs) are an important family of 18 isozymes, which are being pursued as drug targets for many types of disorders. HDAC2 and HDAC8 are two of the isozymes, which have been identified as drug targets for the design of anti‐cancer, neurodegenerative, immunological, and anti‐parasitic agents. Design of potent HDAC2 and HDAC8 inhibitors will be useful for the therapeutic advances in many disorders. This work was undertaken to develop potent HDAC2 and HDAC8 inhibitors. A docking study was performed comparing panobinostat derivatives in both HDAC2 and HDAC8. Six of our derivatives showed stronger binding to HDAC2 than panobinostat, and two of our derivatives showed stronger binding to HDAC8 than panobinostat. We evaluated the molecular features, which improved potency of our inhibitors over panobinostat and also identified another molecular consideration, which could be used to enhance histone deacetylase inhibitor (HDACi) selectivity towards either the HDAC2 or HDAC8 isozymes. The results of this work can be used to assist future design of more potent and selective HDACi for HDAC2 and HDAC8. 
    more » « less