skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast and Accurate Ring Strain Energy Predictions with Machine Learning and Application in Strain-Promoted Reactions
Award ID(s):
2202693
PAR ID:
10642423
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
JACS Au
Volume:
5
Issue:
10
ISSN:
2691-3704
Format(s):
Medium: X Size: p. 4750-4761
Size(s):
p. 4750-4761
Sponsoring Org:
National Science Foundation
More Like this
  1. Strain glass is a new strain state discovered recently in ferroelastic systems that is characterized by nanoscale martensitic domains formed through a freezing transition. These nanodomains typically have mottled or tweed morphology depending on the elastic anisotropy of the system. Strain glass transition is a broadly smeared and high order–like transition, taking place within a wide temperature or stress range. It is accompanied by many unique properties, including linear superelasticity with high strength, low modulus, Invar and Elinvar anomalies, and large magnetostriction. In this review, we first discuss experimental characterization and testing that have led to the discovery of the strain glass transition and its unique properties. We then introduce theoretical models and computer simulations that have shed light on the origin and mechanisms underlying the unique characteristics and properties of strain glass transitions. Unresolved issues and challenges in strain glass study are also addressed. Strain glass transition can offer giant elastic strain and ultralow elastic modulus by well-controlled reversible structural phase transformations through defect engineering. 
    more » « less
  2. Strain is powerful for discovery and manipulation of new phases of matter; however, elastic strains accessible to epitaxial films and bulk crystals are typically limited to small ( < 2 %), uniform, and often discrete values. This Perspective highlights emerging directions for strain and strain gradient engineering in free-standing single-crystalline membranes of quantum materials. Membranes enable large ( ∼ 10 %), continuously tunable strains and strain gradients via bending and rippling. Moreover, strain gradients break inversion symmetry to activate polar distortions, ferroelectricity, chiral spin textures, superconductivity, and topological states. Recent advances in membrane synthesis by remote epitaxy and sacrificial etch layers enable extreme strains in transition metal oxides, intermetallics, and Heusler compounds, expanding beyond the natively van der Waals (vdW) materials like graphene. We highlight emerging opportunities and challenges for strain and strain gradient engineering in membranes of non-vdW materials. 
    more » « less
  3. null (Ed.)
  4. The strength and stress-dilatancy of uniform sands has been studied extensively in geotechnical investigations, and practitioners can draw on a wealth of previously reported data for the estimation of their volumetric response. However, the suitability of accepted stress-dilatancy theory and empiricism has not been evaluated for well-graded gravelly soils. Axisymmetric, isotropically consolidated drained compression, and pure shear, plane strain quasi-K0 consolidated drained tests were performed on well-graded Kanaskat gravel using confining pressures ranging over three orders of magnitude to determine its stiffness, strength, and stress-dilatancy response. The plane strain stiffness, strength, and stress-dilatancy of Kanaskat gravel is observed from tests performed using a large cubical true-triaxial device with flexible bladders. The observed response is interpreted with a view of experimental boundary conditions and their impact on the volumetric response. The observed plane strain shear modulus and friction, and dilation angles of well-graded sandy gravel soils commonly used in practice are significantly higher than those measured in the triaxial compression stress path. Existing empirical and modified stress-dilatancy expressions proposed for low confining pressures underestimate the observed dilation response; however, another common empirical approach appears to adequately capture the dilatancy. The data reported herein should help practitioners estimate plane strain behavior of sandy gravel mixtures. 
    more » « less