skip to main content


Title: Strain and strain gradient engineering in membranes of quantum materials
Strain is powerful for discovery and manipulation of new phases of matter; however, elastic strains accessible to epitaxial films and bulk crystals are typically limited to small ( < 2 %), uniform, and often discrete values. This Perspective highlights emerging directions for strain and strain gradient engineering in free-standing single-crystalline membranes of quantum materials. Membranes enable large ( ∼ 10 %), continuously tunable strains and strain gradients via bending and rippling. Moreover, strain gradients break inversion symmetry to activate polar distortions, ferroelectricity, chiral spin textures, superconductivity, and topological states. Recent advances in membrane synthesis by remote epitaxy and sacrificial etch layers enable extreme strains in transition metal oxides, intermetallics, and Heusler compounds, expanding beyond the natively van der Waals (vdW) materials like graphene. We highlight emerging opportunities and challenges for strain and strain gradient engineering in membranes of non-vdW materials.  more » « less
Award ID(s):
1752797
NSF-PAR ID:
10423514
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
17
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al2O3substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetism and magnetostriction) and strain gradients (flexomagnetism).

     
    more » « less
  2. Abstract

    Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.

     
    more » « less
  3. Hydrogels are a class of soft, highly deformable materials formed by swelling a network of polymer chains in water. With mechanical properties that mimic biological materials, hydrogels are often proposed for load bearing biomedical or other applications in which their deformation and failure properties will be important. To study the failure of such materials a means for the measurement of deformation fields beyond simple uniaxial tension tests is required. As a non-contact, full-field deformation measurement method, Digital Image Correlation (DIC) is a good candidate for such studies. The application of DIC to hydrogels is studied here with the goal of establishing the accuracy of DIC when applied to hydrogels in the presence of large strains and large strain gradients. Experimental details such as how to form a durable speckle pattern on a material that is 90% water are discussed. DIC is used to measure the strain field in tension loaded samples containing a central hole, a circular edge notch and a sharp crack. Using a nonlinear, large deformation constitutive model, these experiments are modeled using the finite element method (FEM). Excellent agreement between FEM and DIC results for all three geometries shows that the DIC measurements are accurate up to strains of over 10, even in the presence of very high strain gradients near a crack tip. The method is then applied to verify a theoretical prediction that the deformation field in a cracked sample under relaxation loading, i.e. constant applied boundary displacement, is stationary in time even as the stress relaxes by a factor of three. 
    more » « less
  4. Twisting or sliding two-dimensional crystals with respect to each other gives rise to moiré patterns determined by the difference in their periodicities. Such lattice mismatches can exist for several reasons: differences between the intrinsic lattice constants of the two layers, as is the case for graphene on BN; rotations between the two lattices, as is the case for twisted bilayer graphene; and strains between two identical layers in a bilayer. Moiré patterns are responsible for a number of new electronic phenomena observed in recent years in van der Waals heterostructures, including the observation of superlattice Dirac points for graphene on BN, collective electronic phases in twisted bilayers and twisted double bilayers, and trapping of excitons in the moiré potential. An open question is whether we can use moiré potentials to achieve strong trapping potentials for electrons. Here, we report a technique to achieve deep, deterministic trapping potentials via strain-based moiré engineering in van der Waals materials. We use strain engineering to create on-demand soliton networks in transition metal dichalcogenides. Intersecting solitons form a honeycomb-like network resulting from the three-fold symmetry of the adhesion potential between layers. The vertices of this network occur in bound pairs with different interlayer stacking arrangements. One vertex of the pair is found to be an efficient trap for electrons, displaying two states that are deeply confined within the semiconductor gap and have a spatial extent of 2 nm. Soliton networks thus provide a path to engineer deeply confined states with a strain-dependent tunable spatial separation, without the necessity of introducing chemical defects into the host materials. 
    more » « less
  5. Abstract

    Understanding the behavior of confined matter within Van der Waals (VdW) materials is complicated due to the interplay of various factors, including the VdW interaction between the interlayers, the layer interaction with the matter, and the bending strain energy of the layers to accommodate encapsulation. Herein, new insight on the magnitude of pressure and density of water entrapped within confined spaces in VdW materials is provided. This is accomplished by studying the plasmon excitation of water encapsulated between two sheets of graphene membranes in an aberration‐corrected scanning transmission electron microscope. The results indicate ≈12% maximum increase in the density of water under tight graphene encasement, where pressure as high as 400 MPa is expected. The pressure estimation from theoretical analysis considering the effect of VdW forces, Laplace pressure, and strain energy is in agreement with the experimental results. The findings of this work open new opportunities to explore the local physical state of not only water but also other liquid materials under high pressure with imaging and analytical resolutions never achieved before.

     
    more » « less