This content will become publicly available on August 27, 2026
Metal–ligand bonding and noncovalent interactions of mutated myoglobin proteins: a quantum mechanical study
Abstract Metal–ligand bonding and noncovalent interactions (NCIs), such as hydrogen bonding orπ–πinteractions, play a crucial role in determining the structure, function, and selectivity of both biological and artificial metalloproteins. In this study, we employed a hybrid quantum mechanics/molecular mechanics (QM/MM) approach to investigate the ligation of water or cyanide in a mutated myoglobin system, in which the native heme scaffold was replaced with M-salophen or M-salen Schiff base complexes (M = Cr, Mn, Fe). Using our local vibrational mode analysis, particularly local vibrational mode force constants as intrinsic bond strength parameters, complemented with electron density and natural orbital analyses we explored the role of metal–ligand bonding and NCIs in different environments within the myoglobin pocket. Our analysis revealed that metal–ligand bonding, for both water and cyanide ligands, is strongest in the delta form of distal histidine and favors salophen prosthetic groups, as indicated by an overall increase in metal–ligand bond strength. Hydrogen bonding between the distal histidine and ligand also exhibited greater strength in the delta form; however, this effect was more pronounced with salen prosthetic groups. Additionally, the NCIs within the active pocket of the protein were found to be variable, highlighting the adaptability of local force constants. In summary, our data underscore the potential of computational methodologies in guiding the rational design of artificial metalloproteins for tailored applications, with local vibrational mode analysis serving as a powerful tool for bond strength assessment.
more »
« less
- Award ID(s):
- 2102461
- PAR ID:
- 10642497
- Publisher / Repository:
- De Gruyter
- Date Published:
- Journal Name:
- Pure and Applied Chemistry
- Volume:
- 97
- Issue:
- 10
- ISSN:
- 0033-4545
- Page Range / eLocation ID:
- 1435 to 1453
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We present a comprehensive investigation on the different role of CO in carboxy- neuroglobin i) as ligand of the heme group in the active site forming a bond with the heme iron and ii) dissociated from the heme group but still trapped inside the active site, focusing on two specific orientations, one with CO perpendicular to the plane defined by the distal histidine of the enzyme (form A) and one with CO located parallel to that plane (form B). Our study includes wild type carboxy-neuroglobin and nine known protein mutations. Considering that the distal histidine interacting with the heme group can adapt two different tautomeric forms and the two possible orientations of the dissociated CO, a total of 36 protein systems were analyzed in this study. Fully optimized geometries and vibrational frequencies were calculated at the QM/MM level, followed by the local mode analysis, to decode CO bond properties. The intrinsic bond strengths derived from the local mode analysis, complemented with NBO and QTAIM data, reveal that the strength of the CO bond, in the hexacoordinate (where CO is a ligand of the heme group) and pentacoordinate (where CO is dissociated from the heme group) scenarios, is dominated by through bond and through space charge transfer between CO and Fe, fine-tuned by electrostatic and dispersion interactions with the side chain amino acids in the distal heme pocket. Suggestions are made as to advise on how protein modifications can influence the molecular properties of the coordinated or dissociated CO, which could serve the fine-tuning of existing and the design of new neuroglobin models with specific FeC and CO bond strengths.more » « less
-
We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes.more » « less
-
In this work hydrogen bonding in a diverse set of 36 unnatural and the three natural Watson Crick base pairs adenine (A)–thymine (T), adenine (A)–uracil (U) and guanine (G)–cytosine (C) was assessed utilizing local vibrational force constants derived from the local mode analysis, originally introduced by Konkoli and Cremer as a unique bond strength measure based on vibrational spectroscopy. The local mode analysis was complemented by the topological analysis of the electronic density and the natural bond orbital analysis. The most interesting findings of our study are that (i) hydrogen bonding in Watson Crick base pairs is not exceptionally strong and (ii) the N–H⋯N is the most favorable hydrogen bond in both unnatural and natural base pairs while O–H⋯N/O bonds are the less favorable in unnatural base pairs and not found at all in natural base pairs. In addition, the important role of non-classical C–H⋯N/O bonds for the stabilization of base pairs was revealed, especially the role of C–H⋯O bonds in Watson Crick base pairs. Hydrogen bonding in Watson Crick base pairs modeled in the DNA via a QM/MM approach showed that the DNA environment increases the strength of the central N–H⋯N bond and the C–H⋯O bonds, and at the same time decreases the strength of the N–H⋯O bond. However, the general trends observed in the gas phase calculations remain unchanged. The new methodology presented and tested in this work provides the bioengineering community with an efficient design tool to assess and predict the type and strength of hydrogen bonding in artificial base pairs.more » « less
-
Abstract For a series of cytochrome b5 proteins isolated from various species, including bacteria, animals, and humans, we analyzed the intrinsic strength of their distal/proximal FeN bonds and the intrinsic stiffness of their axial NFeN bond angles. To assess intrinsic bond strength and bond angle stiffness, we employed local vibrational stretching force constants ka(FeN) and bending force constants ka(NFeN) derived from the local mode theory developed by our group; the ferric and ferrous oxidation states of the heme Fe were considered. All calculations were conducted with the QM/MM methodology. We found that the reduction of the heme Fe from the ferric to the ferrous state makes the FeN axial bonds weaker, longer, less covalent, and less polar. Additionally, the axial NFeN bond angle becomes stiffer and less flexible. Local mode force constants turned out to be far more sensitive to the protein environment than geometries; evaluating force constant trends across diverse protein groups and monitoring changes in the axial heme‐framework revealed redox‐induced changes to the primary coordination sphere of the protein. These results indicate that local mode force constants can serve as useful feature data for training machine learning models that predict cytochrome b5 redox potentials, which currently rely more on geometric data and qualitative descriptors of the protein environment. The insights gained through our investigation also offer valuable guidance for strategically fine‐tuning artificial cytochrome b5 proteins and designing new, versatile variants.more » « less
An official website of the United States government
