skip to main content

This content will become publicly available on July 15, 2023

Title: CO Bonding in Hexa- and Pentacoordinate Carboxy-Neuroglobin - A QM/MM and Local Vibrational Mode Study
We present a comprehensive investigation on the different role of CO in carboxy- neuroglobin i) as ligand of the heme group in the active site forming a bond with the heme iron and ii) dissociated from the heme group but still trapped inside the active site, focusing on two specific orientations, one with CO perpendicular to the plane defined by the distal histidine of the enzyme (form A) and one with CO located parallel to that plane (form B). Our study includes wild type carboxy-neuroglobin and nine known protein mutations. Considering that the distal histidine interacting with the heme group can adapt two different tautomeric forms and the two possible orientations of the dissociated CO, a total of 36 protein systems were analyzed in this study. Fully optimized geometries and vibrational frequencies were calculated at the QM/MM level, followed by the local mode analysis, to decode CO bond properties. The intrinsic bond strengths derived from the local mode analysis, complemented with NBO and QTAIM data, reveal that the strength of the CO bond, in the hexacoordinate (where CO is a ligand of the heme group) and pentacoordinate (where CO is dissociated from the heme group) scenarios, is dominated by through more » bond and through space charge transfer between CO and Fe, fine-tuned by electrostatic and dispersion interactions with the side chain amino acids in the distal heme pocket. Suggestions are made as to advise on how protein modifications can influence the molecular properties of the coordinated or dissociated CO, which could serve the fine-tuning of existing and the design of new neuroglobin models with specific FeC and CO bond strengths. « less
Authors:
Award ID(s):
2102461
Publication Date:
NSF-PAR ID:
10342535
Journal Name:
Journal of computational chemistry
ISSN:
0192-8651
Sponsoring Org:
National Science Foundation
More Like this
  1. Mononuclear non-heme iron enzymes are a large class of enzymes catalyzing a wide-range of reactions. In this work, we report that a non-heme iron enzyme in Methyloversatilis thermotolerans , OvoA Mtht, has two different activities, as a thiol oxygenase and a sulfoxide synthase. When cysteine is presented as the only substrate, OvoA Mtht is a thiol oxygenase. In the presence of both histidine and cysteine as substrates, OvoA Mtht catalyzes the oxidative coupling between histidine and cysteine (a sulfoxide synthase). Additionally, we demonstrate that both substrates and the active site iron's secondary coordination shell residues exert exquisite control over the dual activities of OvoA Mtht (sulfoxide synthase vs. thiol oxygenase activities). OvoA Mtht is an excellent system for future detailed mechanistic investigation on how metal ligands and secondary coordination shell residues fine-tune the iron-center electronic properties to achieve different reactivities.
  2. In this work, we investigated bonding features of 15 ruthenium(II) nitrile complexes of the type [Ru(tpy)(L)-(CH 3 CN)] n+ , containing the tridentate tpy ligand (tpy = 2,2′:6′,2″-terpyridine) and various bidentate ancillary ligands L; 12 compounds originally synthesized by Loftus et al. [J. Phys. Chem. C 123, 10291–10299 (2019)] and three new complexes. We utilized local vibrational force constants derived from the local mode theory as a quantitative measure of bond strength complemented with the topological analysis of the electron density and the natural bond orbital analysis. Loftus et al. suggested that nitrile dissociation occurs after light induced singlet–triplet transition of the original complexes and they used as a measure of nitrile release efficiency quantum yields for ligand exchange in water. They observed larger quantum yields for complexes with smaller singlet–triplet energy gaps. The major goal of this work was to assess how the Ru–NC and Ru–L bond strengths in these 15 compounds relate to and explain the experimental data of Loftus et al., particularly focusing on the question whether there is a direct correlation between Ru–NC bond strength and measured quantum yield. Our study provides the interesting result that the compounds with the highest quantum yields also have themore »strongest Ru–NC bonds suggesting that breaking the Ru–NC bond is not the driving force for the delivery process rather than the change of the metal framework as revealed by first results of a unified reaction valley approach investigation of the mechanism. Compounds with the highest quantum yield show larger electronic structure changes upon singlet–triplet excitation, i.e., larger changes in bond strength, covalency, and difference between the singlet and triplet HOMOs, with exception of the compound 12. In summary, this work provides new insights into the interplay of local properties and experimental quantum yields forming in synergy a useful tool for fine tuning of existing and future design of new nitrile releasing ruthenium compounds. We hope that this work will bring theoretical and experimental studies closer together and serves as an incubator for future collaboration between computational chemists and their experimental colleagues.« less
  3. Abstract With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba 3 CoSb 2 O 9 , a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba 2.87 Sr 0.13 CoSb 2 O 9 with Sr doping on non-magnetic Ba 2+ ion sites. The results show that Ba 2.87 Sr 0.13 CoSb 2 O 9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field with reduced ordered moment as 1.24 μ B /Co; (iii) a series of spin state transitions for both H ∥ ab -plane and H ∥ c -axis. For H ∥ ab -plane, the magnetization plateau feature related to the up–up–down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba 3 CoSb 2 O 9 , which demonstrates that the non-magnetic ion site disorder (the Sr doping) playsmore »a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.« less
  4. This paper summarizes the best practices and lessons learned from organizing an effective remote REU Site during COVID-19. Our REU Site is a three-year program that is designed to offer closely-mentored summer research experience to a cohort of ten students in each of the three years. COVID-19 has disrupted our site by forcing us to split our second cohort to two groups, two students in summer 2020 and seven students in summer 2021. However, the experience that we gained in summer 2020 by mentoring the two students virtually online has provided us with the confidence that a virtual REU Site with a larger group can be as effective as in person and on campus. To further improve the quality of our REU Site in the on-line mode, we have applied multiple novel practices. Specifically, before the start of the 2021 REU site we as the site co-directors proactively worked with mentors to better understand the needs of the defined research projects. Subsequently, we tailored the topics covered by the crash course of our site to the needs of the research projects as well as purposefully increasing active learning activities and student interactions. In lieu of the previous in-person bond buildingmore »activity (a two-day high rope course in a nearby camp), we added virtual scavenger image hunt in orientation and game nights every Wednesday. During the ten weeks, we also organized a half-hour daily check-in and check-out in the morning and afternoon respectively, through which students got ample opportunities to speak in a group setting about their own accomplishments and challenges for the day as well as their plans for the next day. Moreover, a PhD pathways panel and several professional development seminars on Graduate School and the research process were successfully organized to motivate students to pursue a research career. To facilitate communication, our site adopted multiple software tools (slack, google calendar, zoom, and moodle). An independent evaluator evaluated our program through online pre- and post-program surveys for both students and mentors as well as a focus group discussion with students. The evaluation report indicates significant improvement from the summer 2021 site regarding student satisfaction compared to the previous summer 2019 on-site program. Detailed quantitative analysis and lessons learned from the report will be presented in this paper to offer valuable experience and best practices for organizing effective cohort-based undergraduate research programs.« less
  5. Ergothioneine, a natural longevity vitamin and antioxidant, is a thiol-histidine derivative. Recently, two types of biosynthetic pathways were reported. In the aerobic ergothioneine biosyntheses, non-heme iron enzymes incorporate a sulfoxide into an sp2 C–H bond from trimethyl-histidine (hercynine) through oxidation reactions. In contrast, in the anaerobic ergothioneine biosynthetic pathway in a green-sulfur bacterium, Chlorobium limicola, a rhodanese domain containing protein (EanB), directly replaces this unreactive hercynine C–H bond with a C–S bond. Herein, we demonstrate that polysulfide (HSSnSR) is the direct sulfur source in EanB catalysis. After identifying EanB’s substrates, X-ray crystallography of several intermediate states along with mass spectrometry results provide additional mechanistic details for this reaction. Further, quantum mechanics/molecular mechanics (QM/MM) calculations reveal that the protonation of Nπ of hercynine by Tyr353 with the assistance of Thr414 is a key activation step for the hercynine sp2 C–H bond in this trans-sulfuration reaction.