skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Microtopography-induced changes in cell nucleus morphology enhance bone regeneration by modulating the cellular secretome
Nuclear morphology plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored. In this study, we fabricate implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell secretome for osteogenesis and cranial bone regeneration. In vitro, cells with deformed nuclei show enhanced secretion of proteins that support extracellular matrix (ECM) organization, which promotes osteogenic differentiation in neighboring mesenchymal stromal cells (MSCs). In a female mouse model with critical-size cranial defects, nuclear-deformed MSCs on micropillar mPOC/HA implants elevate Col1a2 expression, contributing to bone matrix formation, and drive cell differentiation toward osteogenic progenitor cells. These findings indicate that micropillars modulate the secretome of hMSCs, thereby influencing the fate of surrounding cells through matricrine effects.  more » « less
Award ID(s):
1830968
PAR ID:
10642549
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
Springer
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The surface topography and chemistry of titanium–aluminum–vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates. MSCs on MN surfaces exhibited enhanced osteoblastic differentiation, evidenced by increased expression of RUNX2, SP7, BGLAP, BMP2, and BMPR1A (fold increases: 3.2, 1.8, 1.4, 1.3, and 1.2). The MN surface also induced a pro-healing inflammasome with upregulation of anti-inflammatory mediators (170–200% increase) and downregulation of pro-inflammatory factors (40–82% reduction). Integrin expression shifted towards osteoblast-associated integrins on MN surfaces. RNA-seq analysis revealed distinct gene expression profiles between MSCs on MN surfaces and those in OM, with only 199 shared genes out of over 1000 differentially expressed genes. Pathway analysis showed that MN surfaces promoted bone formation, maturation, and remodeling through non-canonical Wnt signaling, while OM stimulated endochondral bone development and mineralization via canonical Wnt3a signaling. These findings highlight the importance of Ti6Al4V surface properties in directing MSC differentiation and indicate that MN-modified surfaces act via signaling pathways that differ from OM culture methods, more accurately mimicking peri-implant osteogenesis in vivo. 
    more » « less
  2. Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes, which have been utilized extensively in the field of bone tissue engineering and cell-based therapy. Although fluid shear stress plays an important role in bone osteogenic differentiation, the cellular and molecular mechanisms underlying this effect remain poorly understood. Here, a locked nucleic acid (LNA)/DNA nanobiosensor was exploited to monitor mRNA gene expression of hMSCs that were exposed to physiologically relevant fluid shear stress to examine the regulatory role of Notch signaling during osteogenic differentiation. First, the effects of fluid shear stress on cell viability, proliferation, morphology, and osteogenic differentiation were investigated and compared. Our results showed shear stress modulates hMSCs morphology and osteogenic differentiation depending on the applied shear and duration. By incorporating this LNA/DNA nanobiosensor and alkaline phosphatase (ALP) staining, we further investigated the role of Notch signaling in regulating osteogenic differentiation. Pharmacological treatment is applied to disrupt Notch signaling to investigate the mechanisms that govern shear stress induced osteogenic differentiation. Our experimental results provide convincing evidence supporting that physiologically relevant shear stress regulates osteogenic differentiation through Notch signaling. Inhibition of Notch signaling mediates the effects of shear stress on osteogenic differentiation, with reduced ALP enzyme activity and decreased Dll4 mRNA expression. In conclusion, our results will add new information concerning osteogenic differentiation of hMSCs under shear stress and the regulatory role of Notch signaling. Further studies may elucidate the mechanisms underlying the mechanosensitive role of Notch signaling in stem cell differentiation. 
    more » « less
  3. Magnesium (Mg) and its alloys are considered to be biodegradable metallic biomaterials for potential orthopedic implants. While the osteogenic properties of Mg alloys have been widely studied, few reports focused on developing a bifunctional Mg implant with osteogenic and angiogenic properties. Herein, a Mg-Sc-Sr alloy was developed, and this alloy’s angiogenesis and osteogenesis effects were evaluated in vitro for the first time. X-ray Fluorescence (XRF), X-ray diffraction (XRD), and metallography images were used to evaluate the microstructure of the developed Mg-Sc-Sr alloy. Human umbilical vein/vascular endothelial cells (HUVECs) were used to evaluate the angiogenic character of the prepared Mg-Sc-Sr alloy. A mix of human bone-marrow-derived mesenchymal stromal cells (hBM-MSCs) and HUVEC cell cultures were used to assess the osteogenesis-stimulating effect of Mg-Sc-Sr alloy through alkaline phosphatase (ALP) and Von Kossa staining. Higher ALP activity and the number of calcified nodules (27% increase) were obtained for the Mg-Sc-Sr-treated groups compared to Mg-treated groups. In addition, higher VEGF expression (45.5% increase), tube length (80.8% increase), and number of meshes (37.9% increase) were observed. The Mg-Sc-Sr alloy showed significantly higher angiogenesis and osteogenic differentiation than pure Mg and the control group, suggesting such a composition as a promising candidate in bone implants. 
    more » « less
  4. Abstract Delivery of therapeutic stem cells to treat bone tissue damage is a promising strategy that faces many hurdles to clinical translation. Among them is the design of a delivery vehicle which promotes desired cell behavior for new bone formation. In this work, we describe the use of an injectable microporous hydrogel, made of crosslinked gelatin microgels, for the encapsulation and delivery of human mesenchymal stem cells (MSCs) and compared it to a traditional nonporous injectable hydrogel. MSCs encapsulated in the microporous hydrogel showed rapid cell spreading with direct cell–cell connections whereas the MSCs in the nonporous hydrogel were entrapped by the surrounding polymer mesh and isolated from each other. On a per-cell basis, encapsulation in microporous hydrogel induced a 4 × increase in alkaline phosphatase (ALP) activity and calcium mineral deposition in comparison to nonporous hydrogel, as measured by ALP and calcium assays, which indicates more robust osteogenic differentiation. RNA-seq confirmed the upregulation of the genes and pathways that are associated with cell spreading and cell–cell connections, as well as the osteogenesis in the microporous hydrogel. These results demonstrate that microgel-based injectable hydrogels can be useful tools for therapeutic cell delivery for bone tissue repair. 
    more » « less
  5. Abstract Advances in engineered hydrogels reveal how cells sense and respond to 3D biophysical cues. However, most studies rely on interfacing a population of cells in a tissue‐scale bulk hydrogel, an approach that overlooks the heterogeneity of local matrix deposition around individual cells. A droplet microfluidic technique to deposit a defined amount of 3D hydrogel matrices around single cells independently of material composition, elasticity, and stress relaxation times is developed. Mesenchymal stem cells (MSCs) undergo isotropic volume expansion more rapidly in thinner gels that present an Arg‐Gly‐Asp integrin ligand. Mathematical modeling and experiments show that MSCs experience higher membrane tension as they expand in thinner gels. Furthermore, thinner gels facilitate osteogenic differentiation of MSCs. By modulating ion channels, it is shown that isotropic volume expansion of single cells predicts intracellular tension and stem cell fate. The results suggest the utility of precise microscale gel deposition to control single cell functions. 
    more » « less