skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The fate of rotating massive stars across cosmic times
ABSTRACT The initial mass and metallicity of stars both have a strong impact on their fate. Stellar axial rotation also has a strong impact on the structure and evolution of massive stars. In this study, we exploit the large grid of GENEC models, covering initial masses from 9 to 500 $${\rm M}_{\odot }$$ and metallicities ranging from $$Z=10^{-5}$$ (nearly zero) to 0.02 (supersolar), to determine the impact of rotation on their fate across cosmic times. Using the carbon–oxygen core mass and envelope composition as indicators of their fate, we predict stellar remnants, supernova engines, and spectroscopic supernova types for both rotating and non-rotating stars. We derive rates of the different supernova and remnant types considering two initial mass functions to help solve puzzles such as the absence of observed pair-instability supernovae. We find that rotation significantly alters the remnant type and supernova engine, with rotating stars favouring black hole formation at lower initial masses than their non-rotating counterparts. Additionally, we confirm the expected strong metallicity dependence of the fates with a maximum black hole mass predicted to be below 50 $${\rm M}_{\odot }$$ at SMC or higher metallicities. A pair-instability mass gap is predicted between about 90 and 150 $${\rm M}_{\odot }$$, with the most massive black holes below the gap found at the lowest metallicities. Considering the fate of massive single stars has far-reaching consequences across many different fields within astrophysics, and understanding the impact of rotation and metallicity will improve our understanding of how massive stars end their lives, and their impact on the Universe.  more » « less
Award ID(s):
1927130
PAR ID:
10642584
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
543
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2796-2815
Size(s):
p. 2796-2815
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Evolved Wolf–Rayet stars form a key aspect of massive star evolution, and their strong outflows determine their final fates. In this study, we calculate grids of stellar models for a wide range of initial masses at five metallicities (ranging from solar down to just 2 per cent solar). We compare a recent hydrodynamically consistent wind prescription with two earlier frequently used wind recipes in stellar evolution and population synthesis modelling, and we present the ranges of maximum final masses at core He-exhaustion for each wind prescription and metallicity Z. Our model grids reveal qualitative differences in mass-loss behaviour of the wind prescriptions in terms of ‘convergence’. Using the prescription from Nugis & Lamers the maximum stellar black hole is found to converge to a value of 20–30 M⊙, independent of host metallicity; however, when utilizing the new physically motivated prescription from Sander & Vink there is no convergence to a maximum black hole mass value. The final mass is simply larger for larger initial He-star mass, which implies that the upper black hole limit for He-stars below the pair-instability gap is set by prior evolution with mass loss, or the pair instability itself. Quantitatively, we find the critical Z for pair-instability (ZPI) to be as high as 50 per cent Z⊙, corresponding to the host metallicity of the Large Magellanic Cloud. Moreover, while the Nugis & Lamers prescription would not predict any black holes above the approx 130 M⊙ pair-instability limit, with Sander & Vink winds included, we demonstrate a potential channel for very massive helium stars to form such massive black holes at ∼2 per cent Z⊙ or below. 
    more » « less
  2. ABSTRACT We present a grid of stellar models at supersolar metallicity (Z = 0.020) extending the previous grids of Geneva models at solar and sub-solar metallicities. A metallicity of Z = 0.020 was chosen to match that of the inner Galactic disc. A modest increase of 43 per cent (= 0.02/0.014) in metallicity compared to solar models means that the models evolve similarly to solar models but with slightly larger mass-loss. Mass-loss limits the final total masses of the supersolar models to 35 M⊙ even for stars with initial masses much larger than 100 M⊙. Mass-loss is strong enough in stars above 20 M⊙ for rotating stars (25 M⊙ for non-rotating stars) to remove the entire hydrogen-rich envelope. Our models thus predict SNII below 20 M⊙ for rotating stars (25 M⊙ for non-rotating stars) and SNIb (possibly SNIc) above that. We computed both isochrones and synthetic clusters to compare our supersolar models to the Westerlund 1 (Wd1) massive young cluster. A synthetic cluster combining rotating and non-rotating models with an age spread between log10(age/yr) = 6.7 and 7.0 is able to reproduce qualitatively the observed populations of WR, RSG, and YSG stars in Wd1, in particular their simultaneous presence at $$\log _{10}(L/\mathit {\mathrm{ L}}_{\odot })$$ = 5–5.5. The quantitative agreement is imperfect and we discuss the likely causes: synthetic cluster parameters, binary interactions, mass-loss and their related uncertainties. In particular, mass-loss in the cool part of the HRD plays a key role. 
    more » « less
  3. ABSTRACT Stellar-mass black holes (BHs) can be retained in globular clusters (GCs) until the present. Simulations of GC evolution find that the relaxation driven mass-loss rate is elevated if BHs are present, especially near dissolution. We capture this behaviour in a parametrized mass-loss rate, bench marked by results from N-body simulations, and use it to evolve an initial GC mass function (GCMF), similar to that of young massive clusters in the Local Universe, to an age of 12 Gyr. Low-metallicity GCs ([Fe/H] ≲ −1.5) have the highest mass-loss rates, because of their relatively high BH masses, which combined with their more radial orbits and stronger tidal field in the past explains the high turnover mass of the GCMF ($$\sim 10^5\, {\rm M}_\odot$$ ) at large Galactic radii ($$\gtrsim 10\, {\rm kpc}$$ ). The turnover mass at smaller Galactic radii is similar because of the upper mass truncation of the initial GCMF and the lower mass-loss rate due to the higher metallicities. The density profile in the Galaxy of mass lost from massive GCs ($$\gtrsim 10^{5}\, {\rm M}_\odot$$ ) resembles that of nitrogen-rich stars in the halo, confirming that these stars originated from GCs. We conclude that two-body relaxation is the dominant effect in shaping the GCMF from a universal initial GCMF, because including the effect of BHs reduces the need for additional disruption mechanisms. 
    more » « less
  4. null (Ed.)
    Context. Grids of stellar models, computed with the same physical ingredients, allow one to study the impact of a given physics on a broad range of initial conditions and they are a key ingredient for modeling the evolution of galaxies. Aims. We present here a grid of single star models for masses between 0.8 and 120 M ⊙ , with and without rotation for a mass fraction of heavy element Z  = 0.006, representative of the Large Magellanic Cloud (LMC). Methods. We used the GENeva stellar Evolution Code. The evolution was computed until the end of the central carbon-burning phase, the early asymptotic giant branch phase, or the core helium-flash for massive, intermediate, and low mass stars, respectively. Results. The outputs of the present stellar models are well framed by the outputs of the two grids obtained by our group for metallicities above and below the one considered here. The models of the present work provide a good fit to the nitrogen surface enrichments observed during the main sequence for stars in the LMC with initial masses around 15 M ⊙ . They also reproduce the slope of the luminosity function of red supergiants of the LMC well, which is a feature that is sensitive to the time-averaged mass loss rate over the red supergiant phase. The most massive black hole that can be formed from the present models at Z  = 0.006 is around 55 M ⊙ . No model in the range of mass considered will enter into the pair-instability supernova regime, while the minimal mass to enter the region of pair pulsation instability is around 60 M ⊙ for the rotating models and 85 M ⊙ for the nonrotating ones. Conclusions. The present models are of particular interest for comparisons with observations in the LMC and also in the outer regions of the Milky Way. We provide public access to numerical tables that can be used for computing interpolated tracks and for population synthesis studies. 
    more » « less
  5. We study the impact of stellar cooling due to light axion emission on the formation and evolution of black hole binaries, via stable mass transfer and the common envelope scenario.~We find that in the presence of light axion emission, no binary black hole mergers are formed with black holes in the lower mass gap ($$M_{\rm BH} < 4 {\rm M}_\odot $$) via the common envelope formation channel.~In some systems, this happens because axions prevent Roche lobe overflow.~In others, they prevent the common envelope from being ejected.~Our results apply to axions with couplings $$ g_{a \gamma} \gtrsim 10^{-10}\, \rm GeV^{-1}$$ (to photons) or $$\alpha_{ae} \gtrsim 10^{-26} $$ (to electrons) and masses $$ m_a \ll 10 \, \rm keV$$.~Light, weakly coupled particles may therefore apparently produce a mass gap $$2 {\rm M}_\odot < M_{\rm BH} < 4 {\rm M}_\odot$$ in the LIGO/Virgo/KAGRA data, when no mass gap is present in the stellar remnant population. 
    more » « less