skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 25, 2025

Title: Encrypted data-sharing for preserving privacy in wastewater-based epidemiology
The rapidly expanding use of wastewater for public health surveillance requires new strategies to protect privacy rights, while data are collected at increasingly discrete geospatial scales, i.e., city, neighborhood, campus, and building-level. Data collected at high geospatial resolution can inform on labile, short-lived biomarkers, thereby making wastewater-derived data both more actionable and more likely to cause privacy concerns and stigma- tization of subpopulations. Additionally, data sharing restrictions among neighboring cities and communities can complicate efforts to balance public health protections with citizens’ privacy. Here, we have created an encrypted framework that facilitates the sharing of sensitive population health data among entities that lack trust for one another (e.g., between adjacent municipalities with different governance of health monitoring and data sharing). We demonstrate the utility of this approach with two real-world cases. Our results show the feasibility of sharing encrypted data between two municipalities and a laboratory, while performing secure private com- putations for wastewater-based epidemiology (WBE) with high precision, fast speeds, and low data costs. This framework is amenable to other computations used by WBE researchers including population normalized mass loads, fecal indicator normalizations, and quality control measures. The Centers for Disease Control and Pre- vention’s National Wastewater Surveillance System shows ~8 % of the records attributed to collection before the wastewater treatment plant, illustrating an opportunity to further expand currently limited community-level sampling and public health surveillance through security and responsible data-sharing as outlined here.  more » « less
Award ID(s):
2115075 2211750
PAR ID:
10524732
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Science of The Total Environment
Volume:
940
Issue:
C
ISSN:
0048-9697
Page Range / eLocation ID:
173315
Subject(s) / Keyword(s):
Wastewater-based surveillance Privacy Homomorphic encryption Ethics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elkins, Christopher A (Ed.)
    ABSTRACT Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve different targets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods. IMPORTANCEWastewater surveillance was a useful tool to elucidate the burden and spread of SARS-CoV-2 during the pandemic. Public health officials and researchers are interested in expanding these surveillance programs to include bacterial targets, but many questions remain. The NSF-funded Research Coordination Network for Wastewater Surveillance of SARS-CoV-2 and Emerging Public Health Threats held a workshop to identify barriers and research gaps to implementing bacterial wastewater surveillance programs. 
    more » « less
  2. Abstract Objective Supporting public health research and the public’s situational awareness during a pandemic requires continuous dissemination of infectious disease surveillance data. Legislation, such as the Health Insurance Portability and Accountability Act of 1996 and recent state-level regulations, permits sharing deidentified person-level data; however, current deidentification approaches are limited. Namely, they are inefficient, relying on retrospective disclosure risk assessments, and do not flex with changes in infection rates or population demographics over time. In this paper, we introduce a framework to dynamically adapt deidentification for near-real time sharing of person-level surveillance data. Materials and Methods The framework leverages a simulation mechanism, capable of application at any geographic level, to forecast the reidentification risk of sharing the data under a wide range of generalization policies. The estimates inform weekly, prospective policy selection to maintain the proportion of records corresponding to a group size less than 11 (PK11) at or below 0.1. Fixing the policy at the start of each week facilitates timely dataset updates and supports sharing granular date information. We use August 2020 through October 2021 case data from Johns Hopkins University and the Centers for Disease Control and Prevention to demonstrate the framework’s effectiveness in maintaining the PK11 threshold of 0.01. Results When sharing COVID-19 county-level case data across all US counties, the framework’s approach meets the threshold for 96.2% of daily data releases, while a policy based on current deidentification techniques meets the threshold for 32.3%. Conclusion Periodically adapting the data publication policies preserves privacy while enhancing public health utility through timely updates and sharing epidemiologically critical features. 
    more » « less
  3. null (Ed.)
    Analysis of municipal wastewater, or sewage for public health applications is a rapidly expanding field aimed at understanding emerging epidemiological trends, including human and disease migration. The newly gained ability to extract and analyze genetic material from wastewater poses important societal and ethical questions, including: How to safeguard data? Who owns genetic data recovered from wastewater? What are the ethical and legal issues surrounding its use? In the U.S., both corporate and legal policies regarding privacy have been historically reactive instead of proactive. In wastewater-based epidemiology (WBE), the pace of innovation has outpaced the ability of social and legal mechanisms to keep up. To address this discrepancy, early and robust discussions of the research, policies, and ethics surrounding WBE analysis and genetics is needed. This paper contributes to this discussion by examining ownership issues for human genetic data recovered from wastewater and the uses to which it may be put. We focus particularly on the risks associated with personally identifiable data, highlighting potential risks, relevant privacy-enhancing technologies, and appropriate ethics. The paper proposes an approach for people conducting WBE studies to help them systematically consider the ethical and privacy implications of their work. 
    more » « less
  4. Wastewater surveillance for infectious disease preparednessThe University of Oklahoma Wastewater Based Epidemiology (OU WBE) team highlights successes from their three years of wastewater surveillance in Oklahoma & how this surveillance approach can be used as next-level monitoring for infectious disease preparedness. The OU WBE team, founded by Bradley Stevenson, Jason Vogel, and Katrin Gaardbo Kuhn in response to the COVID-19 pandemic in Summer 2020, has expanded to one of the most extensive wastewater monitoring networks in the world with a team that has included over 50 faculty, students and staff. In a paper published in 1942, Drs. James Trask and John Paul described a study to detect poliovirus in wastewater samples collected in New York and New Haven. They concluded, “It is likely that the periodic sampling of sewage for pathogenic viruses or bacteria may be a method of epidemiological value”. (1) Since then, wastewater surveillance has been used to detect sporadic outbreaks or clusters of various infectious pathogens, reaching new levels of routine utilization during the COVID-19 pandemic.(2) 
    more » « less
  5. The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient. 
    more » « less