Flow-induced vibrations of flexible surfaces driven by coherent vortical structures are ubiquitous in engineering and biological flows; from the extraction of fluidic energy via oscillating electro-active polymers to vocal fold dynamics during voiced speech production. These scenarios may involve either discrete or periodic loading conditions due to the advection of vortices past the structure. This work considers, as a function of the vortex production frequency, the fluid-structure interaction that occurs as vortices are propagated tangentially over flexible plates with variable structural properties. Velocity fields are acquired with particle image velocimetry and used to compute the vorticity and pressure fields, while the plate energy is estimated from its kinematics. Primary and secondary peaks in plate deflection amplitude and the plate energy as a function of vortex production frequency are observed at integer fractions of the fundamental plate frequency. At resonance conditions, plate energy relative to discrete vortex loading is increased by approximately three orders of magnitude, while the sub-harmonics increase the plate energy by about two orders of magnitude. Additional physical influences on the energy exchange process, including vortex-to-plate spacing and Strouhal number, are also investigated, detailing the importance of spatial and temporal interactions. The magnitude of the initial plate deflection as the vortex ring approaches the plate, due to persistent vibrations from previous interactions, is shown to retard the time at which the maximum load is applied as the increased relative vortex-to-plate spacing weakens cross-sign vorticity interactions. Finally, plate properties are scaled to model the structural properties of the vocal folds and the effect of intra-glottal vortices on vocal fold dynamics is quantified, where a negligible influence is observed. 
                        more » 
                        « less   
                    This content will become publicly available on June 25, 2026
                            
                            On the stability of an in-line formation of hydrodynamically interacting flapping plates
                        
                    
    
            The motion of several plates in an inviscid and incompressible fluid is studied numerically using a vortex sheet model. Two to four plates are initially placed in line, separated by a specified distance, and actuated in the vertical direction with a prescribed oscillatory heaving motion. The vertical motion induces the plates’ horizontal acceleration due to their self-induced thrust and fluid drag forces. In certain parameter regimes, the plates adopt equilibrium ‘schooling modes’, wherein they translate at a steady horizontal velocity while maintaining a constant separation distance between them. The separation distances are found to be quantised on the flapping wavelength. As either the number of plates increases or the flapping amplitude decreases, the schooling modes destabilise via oscillations that propagate downstream from the leader and cause collisions between the plates, an instability that is similar to that observed in recent experiments on flapping wings in a water tank (Newbolt et al., 2024,Nat. Commun., vol. 15, 3462). A simple control mechanism is implemented, wherein each plate accelerates or decelerates according to its velocity relative to the plate directly ahead by modulating its own flapping amplitude. This mechanism is shown to successfully stabilise the schooling modes, with remarkable impact on the regularity of the vortex pattern in the wake. Several phenomena observed in the simulations are obtained by a reduced model based on linear thin-aerofoil theory. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2108839
- PAR ID:
- 10642755
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 1013
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We investigate the dynamics and energy production capability of a flexible piezoelectric plate submerged close to the free surface and exposed to incident head gravity waves and current. A theoretical model is derived in which the flag and its wake are represented with a vortex line while the body of the fluid is considered to be inviscid. The model is employed to describe the hydrodynamic interactions between a flexible plate, its wake, gravity incident waves and the current. The model reveals two distinct vibration states of a piezoelectric device corresponding to almost similar optimal energy production levels. The first is associated with the cantilever fluttering mode of the plate, with limited dependency on the plate's flexibility across different Froude numbers and incoming wave frequencies. The other resembles the flow-induced flapping mode in more flexible plates, with the energy output showing a higher dependency on plate flexibility. The concurrent existence of these two energetic modes allows adjustment of the plate length to consistently achieve the maximum energy production level across different flow conditions. The role of the Froude number of the system's responses is explored and correlated to the appearance of gravity wave groups on the surface, each propagating with a different wavenumber. It is shown that a submergence depth of less than half of the body length is required to reach a high energetic condition in subcritical and critical flows. Finally, the optimal inductive and resistive values are related to proper matching between flow, mechanical and electrical time scales.more » « less
- 
            This experimental study investigates the fluid–structure–surface interactions of a flexibly mounted rigid plate in axial flow, focusing on flow-induced vibration (FIV) response and vortex dynamics of the system within a reduced velocity range of$$U^*=0.29\unicode{x2013}8.73$$, corresponding to a Reynolds number range of$$Re=518\unicode{x2013}15\,331$$. The plate, with one and two degrees of freedom (DoFs) for pitching and plunging oscillations, is examined at various submerged heights near the free surface. Results show that the plate exhibits divergence instability at low reduced velocities in both 1DoF and 2DoF systems. As the flow velocity surpasses a critical reduced velocity, periodic limit-cycle oscillations (LCOs) occur, increasing in amplitude until a second critical reduced velocity is reached. Beyond this point, LCOs are suppressed, and the plate experiences an increased static divergence angle with further flow velocity increase. The proximity to the free surface significantly influences the FIV response, with decreasing submerged heights leading to reduced LCO amplitudes and a shift of instabilities to higher reduced velocities. Vortex dynamics are analysed using time-resolved volumetric particle tracking velocimetry and hydrogen bubble flow visualisation. The analysis reveals disruptions in the symmetric flow field near the free surface, causing elongation and fragmentation of vortices in the wake of the plate, as well as vortex coupling. Proper orthogonal decomposition (POD) identifies dominant coherent structures, including leading-edge and trailing-edge vortices, captured in the first and second paired modes. On the other hand, higher POD modes capture the interaction of vortices in the wake and near the free surface.more » « less
- 
            In this work, we present a comprehensive experimental study on the problem of harmonic oscillations of rigid plates with H-shaped cross sections submerged in a quiescent, Newtonian, incompressible, viscous fluid environment. Motivated by recent results on the minimization of hydrodynamic damping for transversely oscillating flat plates, we conduct a detailed qualitative and quantitative experimental investigation of the flow physics created by the presence of the flanges, that is, the vertical segments in the plate cross section. Specifically, the main goal is to elucidate the effect of flange size on various aspects of fluid–structure interaction, by primarily investigating the dynamics of vortex shedding and convection. We perform particle image velocimetry experiments over a broad range of oscillation amplitudes, frequencies, and flange size-to-width ratios by leveraging the identification of pathlines, vortex shedding and dynamics, distinctive hydrodynamic regimes, and steady streaming. The fundamental contributions of this work include novel hydrodynamic regime phase diagrams demonstrating the effect of flange ratio on regime transitions, and in the investigation of their relation to qualitatively distinct patterns of vortex–vortex and vortex–structure interactions. Finally, we discuss steady streaming, identifying primary, and secondary structures as a function of the governing parameters.more » « less
- 
            This paper describes the numerical study of oscillating circular cylinders with rigid splitter plates of different lengths. These geometries may be used as disturbance generators for the study of unsteady airfoils and wings operating in highly vortical flowfields. It has been shown that cylinders undergoing forced rotational oscillations at their natural shedding frequency can produce wakes with minimal deviation in cycle-to-cycle vortex strength and position. Adding a splitter plate allows these deviations to be reduced even further. We present cases for oscillating cylinders having splitter-plate lengths up to [Formula: see text] at a Reynolds number of 7600. Frequencies are maintained at the natural shedding frequency, and a rotational amplitude of 45 deg is used. Numerical simulations are performed using a two-dimensional unsteady Reynolds-averaged Navier–Stokes (RANS) code. Results are presented in the form of vorticity contours and cycle-averaged velocity profiles, as well as the dominant frequencies of cylinder lift force and downstream velocity angles. The results show that splitter-plate lengths shorter than [Formula: see text] adversely affect the ability to generate a coherent vortex wake due to shear layer roll-up near the trailing edge of the plate. Splitter plates longer than [Formula: see text] produced a reverse von Kármán wake with consistent cycle-to-cycle vortex shedding.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
