skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relative Atomic Solar System Abundances, Mass Fractions, and Atomic Masses of the Elements and Their Isotopes, Composition of the Solar Photosphere, and Compositions of the Major Chondritic Meteorite Groups
Award ID(s):
1517541
PAR ID:
10642789
Author(s) / Creator(s):
Publisher / Repository:
Springer
Date Published:
Journal Name:
Space Science Reviews
Volume:
217
Issue:
3
ISSN:
0038-6308
Page Range / eLocation ID:
44
Subject(s) / Keyword(s):
elemental abundances solar abundances composition chondrites meteorites atomic masses atomic weights CI chondrites
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Herein, we synthesize dense, predominantly single-phase polycrystalline samples of the Mn2AlB2 ternary compound, using reactive hot-pressing of manganese, aluminum, and boron powder mixtures under vacuum. With a Vickers hardness of 8.7 GPa, Mn2AlB2 is relatively soft for a transition metal boride and lacked dominant cracks at the corners of the indentations. With Young’s and shear moduli of 243 GPa and 102 GPa at 300 K, respectively, it is reasonably stiff. The Poisson’s ratio is calculated to be 0.19. With compressive strengths of 1.24 ± 0.1 GPa, the samples were quite strong considering the grain size (1–15 μm). The electrical resistivity at 300 K was ∼5 μΩm and decreased linearly upon cooling. At 0.0036 K−1, the temperature coefficient of resistivity was relatively high compared to MoAlB. The average linear thermal expansion coefficient was also found to be relatively high at 18.6 × 10-6 K−1 from 298 to 1173 K. Mn2AlB2 was not thermally stable above ∼1379 K. While Mn2AlB2 was not machinable with conventional tooling, intriguingly, high-speed carbide tools bits readily penetrate the surface – with no cracking or chipping for a few millimeters – before stopping. 
    more » « less
  2. Abstract In January 2021, Metis/SolO and PSP formed a quadrature from which the slow solar wind was able to be measured from the extended solar corona (3.5 – 6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). Metis/SolO remotely measured the coronal solar wind, finding a speed of 96 – 201 kms −1 , and PSP measured the solar wind in situ, finding a speed of 219.34 kms −1 . Similarly, the normalized cross-helicity and the normalized residual energy measured by PSP are 0.96 and -0.07. In this manuscript, we study the evolution of the proton entropy and the turbulence cascade rate of the outward Elsässer energy during this quadrature. We also study the relationship between solar wind speed, density and temperature, and their relationship with the turbulence energy, the turbulence cascade rate, and the solar wind proton entropy. We compare the theoretical results with the observed results measured by Metis/SolO and PSP. 
    more » « less