Strain engineering in two-dimensional (2D) materials is a powerful but difficult to control approach to tailor material properties. Across applications, there is a need for device-compatible techniques to design strain within 2D materials. This work explores how process-induced strain engineering, commonly used by the semiconductor industry to enhance transistor performance, can be used to pattern complex strain profiles in monolayer MoS2 and 2D heterostructures. A traction–separation model is identified to predict strain profiles and extract the interfacial traction coefficient of 1.3 ± 0.7 MPa/μm and the damage initiation threshold of 16 ± 5 nm. This work demonstrates the utility to (1) spatially pattern the optical band gap with a tuning rate of 91 ± 1 meV/% strain and (2) induce interlayer heterostrain in MoS2–WSe2 heterobilayers. These results provide a CMOS-compatible approach to design complex strain patterns in 2D materials with important applications in 2D heterogeneous integration into CMOS technologies, moiré engineering, and confining quantum systems.
more »
« less
This content will become publicly available on September 1, 2026
Forming gas annealing-induced reversible 2D-to-3D bonding transition in 3R-MoS2
We report a method of engineering a reversible change in interlayer bonding between layers of exfoliated thin films of MoS2 by means of hydrogen intercalation through forming gas annealing. Interlayer bonding strength is probed through the behavior of MoS2 under process-induced strain engineering, where two-dimensional (2D) flakes are encapsulated with a deposited stressed thin film layer to transfer strain into the underlying 2D materials. It is shown that after forming gas annealing, the depth of the strain transferred into multilayer MoS2 is enhanced as determined through layer-thickness-dependent Raman spectroscopic mapping. This change represents a transition from a 2D van der Waals-bonded material in the as-exfoliated samples to a more three-dimensional (3D)-bonded system in the annealed samples. We demonstrate the reversibility of this effect by means of vacuum annealing of previously forming gas annealed samples. The process of forming gas annealing itself also imparts strain into MoS2 due to a combination of 2D-to-3D bonding transition with differential thermal mismatch between the MoS2 and the substrate. These strains are shown to be retained after the vacuum annealing process, despite the transition back to 2D bonding. Since forming gas annealing is a common technical process in engineering 2D electronic devices, these results represent an important consideration in understanding non-intentionally applied strains due to changes in the mechanical properties of 2D materials.
more »
« less
- PAR ID:
- 10643102
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 127
- Issue:
- 9
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Solid‐state welding of Al 1043 sheets is achieved via high‐pressure torsion (HPT) processing to produce bulk nanostructured Al disks. A homogeneous nanostructure without segregation is observed, with grain sizes of ≈430–470 nm. Miniature tensile testing, coupled with the digital image correlation (DIC) technique, is employed to determine the room‐temperature tensile deformation behavior, particularly the nonuniform behavior with necking, of the HPT‐bonded ultrafine‐grained (UFG) aluminum, comparing it with annealed coarse‐grained counterpart. The HPT‐bonded UFG Al exhibits a large fraction of post‐necking strain, which is supported by the estimated high strain rate sensitivity value ofm = 0.085, suggesting the delay of local necking leading to tensile fracture. Detailed DIC analysis reveals prolonged diffuse necking, thus delaying local necking, in the HPT‐bonded UFG Al, while the annealed samples show high fractions of local necking during the nonuniform deformation. Moreover, the DIC data illustrate that local necking predominantly occurred at a limited neck zone, maintaining a plateau strain distribution at the out‐of‐neck zone throughout necking deformation toward tensile failure for both annealed and UFG aluminum. The DIC method offers an alternative means to demonstrate the transition in necking behaviors of materials by estimating the plastic lateral contraction exponent.more » « less
-
We demonstrate a technique to strain two-dimensional hexagonal boron nitride (hBN) and graphene by depositing stressed thin films to encapsulate exfoliated flakes. We choose optically transparent stressors to be able to analyze strain in 2D flakes through Raman spectroscopy. Combining thickness-dependent analyses of Raman peak shifts with atomistic simulations of hBN and graphene, we can explore layer-by-layer strain transfer in these materials. hBN and graphene show strain transfer into the top four and two layers of multilayer flakes, respectively. hBN has been widely used as a protective capping layer for other 2D materials, while graphene has been used as a top gate layer in various applications. Findings of this work suggest that straining 2D heterostructures with evaporated stressed thin films through the hBN capping layer or graphene top contact is possible since strain is not limited to a single layer.more » « less
-
A severe plastic deformation process, termed accumulative extrusion bonding (AEB), is conceived to steady-state bond metals in the form of multilayered tubes. It is shown that AEB can facilitate bonding of metals in their solid-state, like the process of accumulative roll bonding (ARB). The AEB steps involve iterative extrusion, cutting, expanding, restacking, and annealing. As the process is iterated, the laminated structure layer thicknesses decrease within the tube wall, while the tube wall thickness and outer diameter remain constant. Multilayered bimetallic tubes with approximately 2 mm wall thickness and 25.25 mm outer diameter of copper-aluminum are produced at 52% radial strain per extrusion pass to contain eight layers. Furthermore, tubes of copper-copper are produced at 52% and 68% strain to contain two layers. The amount of bonding at the metal-to-metal interfaces and grain structure are measured using optical microscopy. After detailed examination, only the copper-copper bimetal deformed to 68% strain is found bonded. The yield strength of the copper-copper tube extruded at 68% improves from 83 MPa to 481 MPa; a 480% increase. Surface preparation, as described by the thin film theory, and the amount of deformation imposed per extrusion pass are identified and discussed as key contributors to enact successful metal-to-metal bonding at the interface. Unlike in ARB, bonding in AEB does not occur at ~50% strain revealing the significant role of more complex geometry of tubes relative to sheets in solid-state bonding.more » « less
-
The effect of the energy valley on interlayer charge transfer in transition metal dichalcogenide (TMD) heterostructures is studied by transient absorption spectroscopy and density functional theory. First-principles calculations confirm that the Λmin valley in the conduction band of few-layer WSe2 evolves from above its K valley in the monolayer (1L) to below it in 4L. Heterostructure samples of 𝑛L−WSe2/1L−MoS2, where 𝑛=1,2,3, and 4, are obtained by mechanical exfoliation and dry transfer. Photoluminescence spectroscopy reveals a thickness-dependent WSe2 band structure and efficient interlayer charge transfer. Transient absorption measurements show that the electron transfer time from the Λmin valley of 4L WSe2 to the K valley of MoS2 is on the order of 30 ps. This process is much slower than the K-K charge transfer in 1L/1L TMD heterostructures. The momentum-indirect interlayer excitons formed after charge transfer have lifetimes >1 ns.more » « less
An official website of the United States government
