Abstract Cyclical variations of the solar magnetic fields, and hence the level of solar activity, are among the top interests of space weather research. Surface flows in global-scale, in particular differential rotation and meridional flows, play important roles in the solar dynamo that describes the origin and variation of solar magnetic fields. In principle, differential rotation is the fundamental cause of dipole field formation and emergence, and meridional flows are the surface component of a longitudinal circulation that brings decayed field from low latitudes to polar regions. Such flows are key inputs and constraints of observational and modeling studies of solar cycles. Here, we present two methods, local correlation tracking (LCT) and machine learning-based self-supervised optical flow methods, to measure differential rotation and meridional flows from full-disk magnetograms that probe the photosphere and $$\text{H}\alpha$$ H α images that probe the chromosphere, respectively. LCT is robust in deriving photospheric flows using magnetograms. However, we found that it failed to trace flows using time-sequence $$\text{H}\alpha $$ H α data because of the strong dynamics of traceable features. The optical flow methods handle $$\text{H}\alpha $$ H α data better to measure the chromospheric flow fields. We found that the differential rotation from photospheric and chromospheric measurements shows a strong correlation with a maximum of $$2.85~\upmu \text{rad}\,\text{s}^{-1}$$ 2.85 μrad s − 1 at the equator and the accuracy holds until $$60^{\circ }$$ 60 ∘ for the MDI and $$\text{H}\alpha$$ H α , $$75^{\circ }$$ 75 ∘ for the HMI dataset. On the other hand, the meridional flow deduced from the chromospheric measurement shows a similar trend as the concurrent photospheric measurement within $$60^{\circ }$$ 60 ∘ with a maximum of $$20~\text{m}\,\text{s}^{-1}$$ 20 m s − 1 at $$40^{\circ }$$ 40 ∘ in latitude. Furthermore, the measurement uncertainties are discussed. 
                        more » 
                        « less   
                    
                            
                            First high-resolution observations of chromospheric swirls with the Dunn Solar Telescope
                        
                    
    
            ABSTRACT We present the first observations of chromospheric swirls using the Hydrogen-alpha Rapid Dynamics camera and Rapid Oscillations in the Solar Atmosphere imaging instruments at the Dunn Solar Telescope. These vortices contribute to heating and dynamics across the solar atmosphere. We analyse the morphology and evolution of 34 swirls and their cospatial bright points (BPs) from the photosphere to the mid-chromosphere. To examine swirl–BP interactions and temporal behaviour, we use image segmentation, Fourier and spectral analysis, and local correlation tracking. The observed swirls have an average lifetime of 7.9 $$\pm$$ 5 min and diameter of 3.6 $$\pm$$ 1 Mm, with a positive correlation indicating smaller swirls tend to be short-lived. 76 per cent are associated with a compact BP appearing 12 s to 9 min after swirl formation. Swirl motion is also closely linked to their BP(s) global motions. The swirls exhibit a mean angular speed of 0.04 rad s$$^{-1}$$, radial speed of 17.7 km s$$^{-1}$$, and period of 180 s. We observe the formation of a spiral-shaped swirl driven by a BP interacting with a large photospheric vortex. The BP is dragged towards the vortex centre, after which the swirl forms. The BP undergoes changes in orientation and elongation that mirror the swirl’s chromospheric development. A time lag of $-42.5$ s between the sudden change in the BP’s orientation and the peak of the swirl’s intensity variation suggests torsional Alfvén waves may contribute to swirl evolution. Our results support a magnetic origin for swirls rooted in motions of photospheric BPs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1936336
- PAR ID:
- 10643173
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 543
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 3152-3171
- Size(s):
- p. 3152-3171
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            It is not yet fully understood how magnetohydrodynamic waves in the interior and atmosphere of the Sun are excited. Traditionally, turbulent convection in the interior is considered to be the source of wave excitation in the quiet Sun. Over the last few decades, acoustic events observed in the intergranular lanes in the photosphere have emerged as a strong candidate for a wave excitation source. Here we report our observations of wave excitation by a new type of event: rapidly changing granules. Our observations were carried out with the Fast Imaging Solar Spectrograph in the H α and Ca II 8542 Å lines and the TiO 7057 Å broadband filter imager of the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. We identify granules in the internetwork region that undergo rapid dynamic changes such as collapse (event 1), fragmentation (event 2), or submergence (event 3). In the photospheric images, these granules become significantly darker than neighboring granules. Following the granules’ rapid changes, transient oscillations are detected in the photospheric and chromospheric layers. In the case of event 1, the dominant period of the oscillations is close to 4.2 min in the photosphere and 3.8 min in the chromosphere. Moreover, in the Ca II –0.5 Å raster image, we observe repetitive brightenings in the location of the rapidly changing granules that are considered the manifestation of shock waves. Based on our results, we suggest that dynamic changes of granules can generate upward-propagating acoustic waves in the quiet Sun that ultimately develop into shocks.more » « less
- 
            We investigated the flow dynamics of tornado-like vortices, examining the influence of swirl ratio, S, defined as the ratio of tangential to radial momentum at the vortex base, on their structural characteristics. Using a combination of particle image velocimetry (PIV) in a custom-built simulator and large-eddy simulations (LES), we analyzed vortex flows at swirl ratios of S=4.66, 1.25, and 0.33. The results demonstrate that vortex flow characteristics strongly depend on S, with improved agreement between experimental and numerical data when employing flow-based swirl ratio definitions. Vortex wandering was quantified in experiments, and corrections were applied to refine tangential and radial velocity profiles. At S=0.33 and 1.25 in experiments and S=1.25 and 4.66 in simulations, the vortex transitioned from a single-celled to a double-celled structure, with further evolution into multi-celled vortices at the highest swirl ratio, substantially modifying circulation patterns. Proper orthogonal decomposition (POD) characterized the coherent structures governing vortex dynamics and their dependence on swirl ratio, revealing distinct physical features associated with each vortex regime.more » « less
- 
            Abstract Plumes are bright structures in coronal holes extending from the solar surface into the corona and are considered as a possible source of the solar wind. Plumes are thought to be rooted in strong unipolar photospheric flux patches (network/plage region). The magnetic activities at the base of plumes may play a crucial role in producing outflows and propagating disturbances (PDs). However, the role of photospheric/chromospheric activities (e.g., jets/spicules) at the base of plumes and their connection to PDs is poorly understood. Using high-resolution observations of a plume taken on 2020 July 23 with the 1.6 m Goode Solar Telescope (GST), Interface Region Imaging Spectrograph (IRIS), and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we analyzed chromospheric/transition region activities at the base of the plume and their connection to outflows/PDs in the plume. The GST Visible Imaging Spectrometer images reveal repetitive spicules with blueshifted emission (pseudo-Doppler maps) at the plume’s footpoint. In addition, the photospheric magnetograms provide evidence of mixed polarities at the base of the plume. The IRIS Mg ii k Dopplergrams show strong blueshifted emission (∼50 km s −1 ) and a high brightness temperature (Mg ii k2 line) at the footpoint of the plume. The long-period PDs ( P ≈ 20–25 minutes) along the plume (AIA 171 Å) match the periodicity of spicules in the chromospheric images, suggesting a close connection between the spicules and the PDs. We suggest that the interchange reconnection between the closed and open flux of the coronal bright point at the plume’s footpoint is the most likely candidate to produce upflows and associated PDs along the plume.more » « less
- 
            null (Ed.)Context. Spectroscopic observations of the emission lines formed in the solar transition region commonly show persistent downflows on the order of 10−15 km s −1 . The cause of such downflows, however, is still not fully clear and has remained a matter of debate. Aims. We aim to understand the cause of such downflows by studying the coronal and transition region responses to the recently reported chromospheric downflowing rapid redshifted excursions (RREs) and their impact on the heating of the solar atmosphere. Methods. We have used two sets of coordinated data from the Swedish 1 m Solar Telescope, the Interface Region Imaging Spectrograph, and the Solar Dynamics Observatory for analyzing the response of the downflowing RREs in the transition region and corona. To provide theoretical support, we use an already existing 2.5D magnetohydrodynamic simulation of spicules performed with the Bifrost code. Results. We find ample occurrences of downflowing RREs and show several examples of their spatio-temporal evolution, sampling multiple wavelength channels ranging from the cooler chromospheric to the hotter coronal channels. These downflowing features are thought to be likely associated with the returning components of the previously heated spicular plasma. Furthermore, the transition region Doppler shifts associated with them are close to the average redshifts observed in this region, which further implies that these flows could (partly) be responsible for the persistent downflows observed in the transition region. We also propose two mechanisms – (i) a typical upflow followed by a downflow and (ii) downflows along a loop –from the perspective of a numerical simulation that could explain the ubiquitous occurrence of such downflows. A detailed comparison between the synthetic and observed spectral characteristics reveals a distinctive match and further suggests an impact on the heating of the solar atmosphere. Conclusions. We present evidence that suggests that at least some of the downflowing RREs are the chromospheric counterparts of the transition region and lower coronal downflows.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
