skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Algebra and other relevant physics skills: The effectiveness of mastery practice on skills accuracy and exam grade in introductory physics
We conducted two studies to investigate the extent to which brief, spaced, mastery practice on skills relevant to introductory physics affects student performance. The first study investigated the effect of practice of “specific” physics skills, each one relevant to only one or a few items on the course exam. This study employed a quasiexperimental design with 766 students assigned to “intervention” or “control” conditions by lecture section sharing common exams. Results of the first study indicate significant improvement in the performance for only some of the exam items relevant to the specific skills practiced. We also observed between-section performance differences on other exam items not relevant to training, which may be due to specific prior quiz items from individual instructors. The second study investigated the effect of practice on the “general” skill of algebra relevant to introductory physics, a skill which was relevant to most of the exam items. This study employed a similar quasiexperimental design with 363 students assigned to treatment or control conditions, and we also administered a reliable pre- and post-test assessment of the algebra skills that was iteratively developed for this project. Results from the second study indicate that 75% of students had high accuracy on the algebra pretest. Students in the control condition who scored low on the pretest gained about 0.7 standard deviations on the post-test, presumably from engagement with the course alone, and students in the algebra practice condition had statistically similar gains, indicating no observed effect of algebra practice on algebra pre- to post-test gains. In contrast, we find some potential evidence that the algebra practice improved final exam performance for students with high pretest scores and did not benefit students with low pretest scores, although this result is inconclusive: the point estimate of the effect size was 0.24 for high pretest scoring students, but the 95% confidence interval [ 0.01 , 0.48] slightly overlapped with zero. Further, we find a statistically significant positive effect of algebra practice on exam items that have higher algebraic complexity and no effect for items with low complexity. One possible explanation for the added benefit of algebra practice for high-scoring students is fluency in algebra skills may have improved. Overall, our observations provide some evidence that spaced, mastery practice is beneficial for exam performance for specific and general skills, and that students who are better prepared in algebra may be especially benefitting from mastery practice in relevant algebra skills in terms of improved final exam performance.  more » « less
Award ID(s):
2235621 1914709
PAR ID:
10643263
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Physics Education Research
Volume:
21
Issue:
1
ISSN:
2469-9896
Subject(s) / Keyword(s):
PER
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accuracy on assessments is commonly studied in education research but response time (RT) is relatively less investigated even though decades of research in cognitive sciences indicate that time can be an important dimension for understanding student learning. To better understand RT and the potentially important relations between accuracy and RT in physics education, we conducted an exploratory investigation by collecting and analyzing both accuracy and RT data on physics-relevant math skills on low-stakes pre and posttests as well as course exam scores in algebra-based and calculus-based introductory physics courses over two semesters for a total of N = 1 9 3 6 participants. Overall, we found a high level of variation in response times revealing weak but consistent patterns of associations between RT and accuracy on skills and exam scores. First, we found a nonlinear relationship between RT and accuracy on the pretest and on the post-test, which may indicate a variety of strategies and engagement among students on these participation-credit-only tests. Second, the results indicate that while RT alone does not predict course grade, when controlling for accuracy on pre or posttest math skills, students with lower RT on these skills are more likely to get better grades. Therefore, both pre or posttest accuracy and speed predicted course grades, though accuracy explained a substantial amount of variance ( 35 % ) while pretest RT explained a much smaller amount of variance ( 1 % ). Third, controlling for both pretest accuracy and pretest RT, we found that students who sped up from pre to posttest were likely to get higher exam scores; however, students who slowed down were on average likely to have a higher post-test score. Fourth, since systemic inequities in STEM education have been documented via measured mean differences between some demographic groups for exam scores and accuracy on math skills, we compared RTs by sex, race, first-generation status, and citizenship to potentially gain more insight into these inequities. We found no consistent or conclusive evidence of demographic differences, though in multiple comparisons, Black, Hispanic, Native American, and Pacific Islander students had larger RTs on average, and in one comparison they were slightly faster. We found that RT was not a mediator of demographic differences in physics grades, though, as expected, accuracy on math skills was a mediator. We briefly discuss how our results relate to various cognitive models such as cognitive ability, speed-accuracy trade-offs, fluency and cognitive load, dual-process theories, and student psychological factors like self-efficacy, anxiety, and motivation. We argue that, based on which (if any) of the above mechanisms are at play, valuing speed in physics may have benefits, such as improving fluency to reduce cognitive load and drawbacks, such as unintentionally using speed as a proxy for achievement or inducing excessive stress that may interfere with performance and student well-being. 
    more » « less
  2. We have investigated the temporal patterns of algebra (N ¼ 606) and calculus (N ¼ 507) introductory physics students practicing multiple basic physics topics several times throughout the semester using an online mastery homework application called science, technology, engineering, and mathematics (STEM) fluency aimed at improving basic physics skills. For all skill practice categories, we observed an increase in measures of student accuracy, such as a decrease in the number of questions attempted to reach mastery, and a decrease in response time per question, resulting in an overall decrease in the total time spent on the assignments. The findings in this study show that there are several factors that impact a student’s performance and evolution on the mastery assignments throughout the semester. For example, using linear mixed modeling, we report that students with lower math preparation for the physics class start with lower accuracy and slower response times on the mastery assignments than students with higher math preparation. However, by the end of the semester, the less prepared students reach similar performance levels to their more prepared classmates on the mastery assignments. This suggests that STEM fluency is a useful tool for instructors to implement to refresh student’s basic math skills. Additionally, gender and procrastination habits impact the effectiveness and progression of the student’s response time and accuracy on the STEM fluency assignments throughout the semester. We find that women initially answer more questions in the same amount of time as men before reaching mastery. As the semester progresses and students practice the categories more, this performance gap diminishes between males and females. In addition, we find that students who procrastinate (those who wait until the final few hours to complete the assignments) are spending more time on the assignments despite answering a similar number of questions as compared to students who do not procrastinate. We also find that student mindset (growth vs fixed mindset) was not related to a student’s progress on the online mastery assignments. Finally, we find that STEM fluency practice improves performance beyond the effects of other components of instruction, such as lectures, group-work recitations, and homework assignments. 
    more » « less
  3. Chemistry instruction should provide students a rationale for appreciating chemistry as a useful discipline, which is a particular challenge given the diverse student interests within introductory chemistry courses. In this study, we introduce and evaluate an interactive assignment, called an Informative Utility Value Intervention (IUVI), meant to improve students’ perceptions of the utility of chemistry. IUVI provides students with web-based articles describing how chemistry topics are relevant to the students’ chosen career interests. IUVI was administered to second-semester general chemistry students with a quasiexperimental study design in which one section from each instructor was given the intervention, and pre-intervention measures were used to account for potential differences between groups. The results indicate that students who received the intervention reported higher perceptions of the utility of chemistry at the end of the semester and higher scores on a common final exam than students who did not receive the intervention. Results from a structural equation model indicated the IUVI was associated with improved utility perceptions and final exam scores; however, these improvements were potentially independent of each other. Therefore, the theoretical explanation that improved perceptions of utility value resulted in improved academic performance could not be supported. Overall, IUVI offers an effective and highly portable intervention which can be adopted and adapted by instructors to promote students’ utility perceptions of chemistry. 
    more » « less
  4. Physics instructors and education researchers use research-based assessments (RBAs) to evaluate students' preparation for physics courses. This preparation can cover a wide range of constructs including mathematics and physics content. Using separate mathematics and physics RBAs consumes course time. We are developing a new RBA for introductory mechanics as an online test using both computerized adaptive testing and cognitive diagnostic models. This design allows the adaptive RBA to assess mathematics and physics content knowledge within a single assessment. In this article, we used an evidence-centered design framework to inform the extent to which our models of skills students develop in physics courses fit the data from three mathematics RBAs. Our dataset came from the LASSO platform and includes 3,491 responses from the Calculus Concept Assessment, Calculus Concept Inventory, and Pre-calculus Concept Assessment. Our model included five skills: apply vectors, conceptual relationships, algebra, visualizations, and calculus. The "deterministic inputs, noisy 'and' gate'' (DINA) analyses demonstrated a good fit for the five skills. The classification accuracies for the skills were satisfactory. Including items from the three mathematics RBAs in the item bank for the adaptive RBA will provide a flexible assessment of these skills across mathematics and physics content areas that can adapt to instructors' needs. 
    more » « less
  5. Dorn, Brian; Vahrenhold, Jan (Ed.)
    Background and Context Lopez and Lister first presented evidence for a skill hierarchy of code reading, tracing, and writing for introductory programming students. Further support for this hierarchy could help computer science educators sequence course content to best build student programming skill. Objective This study aims to replicate a slightly simplified hierarchy of skills in CS1 using a larger body of students (600+ vs. 38) in a non-major introductory Python course with computer-based exams. We also explore the validity of other possible hierarchies. Method We collected student score data on 4 kinds of exam questions. Structural equation modeling was used to derive the hierarchy for each exam. Findings We find multiple best-fitting structural models. The original hierarchy does not appear among the “best” candidates, but similar models do. We also determined that our methods provide us with correlations between skills and do not answer a more fundamental question: what is the ideal teaching order for these skills? Implications This modeling work is valuable for understanding the possible correlations between fundamental code-related skills. However, analyzing student performance on these skills at a moment in time is not sufficient to determine teaching order. We present possible study designs for exploring this more actionable research question. 
    more » « less