skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Suite of Perturbed Parameter Ensembles using CESM2.2 CAM6 under a Wide Range of Temperatures
This dataset originates from a new CESM2 CAM6 perturbed parameter ensemble (PPE) designed to explore climate and hydroclimate dynamics under a wide range of sea surface temperature (SST) conditions. The SST varies from 4 degrees Celsius colder to 16 degrees Celsius warmer than preindustrial levels, encompassing a broad spectrum of mean temperatures spanning the past 65 million years. This dataset offers valuable insights into climate and hydroclimate responses, as well as weather and climate extremes under diverse conditions.The dataset includes results from nine PPE simulations with different SST scenarios: preindustrial (PREI), 4K cooler (M04K), and 4K, 8K, 12K, and 16K warmer (P04K to P16K). For SSTs exceeding 8K warming, sea ice was removed to improve numerical stability. Each PPE set consists of 250 ensemble members, with 45 parameters related to microphysics, convection, turbulence, and aerosols perturbed using Latin Hypercube Sampling. An additional simulation with default parameter settings brings the total to 251 simulations, each running for five years using CAM6.3 (https://github.com/ESCOMP/CAM/tree/cam6_3_026; with additional paleo modifications).Post-processing converted the data into compressed NetCDF-4 format. All 251 runs were concatenated using ncecat to minimize the number of files. For example, the following file contains monthly surface temperature data from the preindustrial PPE: f.c6.F1850.f19_f19.paleo_ppe.sst_prei.ens251/atm/proc/tseries/month_1/f.c6.F1850.f19_f19.paleo_ppe.sst_prei.ens251.cam.h0.TS.000101-000512.ncA detailed variable list [https://rda.ucar.edu/OS/web/datasets/d651038/docs/detailed_vars.txt] can be found in the Documentation Tab.Parameter values are provided in the PPE Parameter File. More details can be found in the paper: Zhu et al. (2025). Investigating the State Dependence of Cloud Feedback Using a Suite of Perturbed Parameter Ensembles, Journal of Climate.  more » « less
Award ID(s):
2303567 2202777
PAR ID:
10643439
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
NSF National Center for Atmospheric Research
Date Published:
Subject(s) / Keyword(s):
EARTH SCIENCE > CLIMATE INDICATORS > CLIMATE FEEDBACKS > ATMOSPHERIC FEEDBACKS
Format(s):
Medium: X Size: 27.265 Tbytes Other: NetCDF
Size(s):
27.265 Tbytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The state dependence of cloud feedback—its variation with the mean state climate—has been found in many paleoclimate and contemporary climate simulations. Previous results have shown inconsistencies in the sign, magnitude, and underlying mechanisms of state dependence. To address this, we utilize a perturbed parameter ensemble (PPE) approach with fixed sea surface temperature (SST) in the Community Atmosphere Model, version 6. Our suites of PPEs span a wide range of global mean surface temperatures (GMSTs), with spatially uniform SST perturbations of −4, 0, 4, 8, 12, and 16 K from the preindustrial. The results reveal a nonmonotonic variation with GMSTs: Cloud feedback increases under both cooler and warmer-than-preindustrial conditions, with a rise of ∼0.1 W m−2K−1under a 4-K colder climate and ∼0.4 W m−2K−1under a 12-K warmer climate. This complexity arises from differing cloud feedback responses in high and low latitudes. In high latitudes, cloud feedback consistently rises with warming, likely driven by a moist adiabatic mechanism that influences cloud liquid water. The low-latitude feedback increases under both cooler and warmer conditions, likely influenced by changes in the lower-tropospheric stability. This stability shift is tied to nonlinearity in thermodynamic responses, particularly in the tropical latent heating, alongside potential state-dependent changes in tropical circulations. Under warmer-than-preindustrial conditions, the increase in cloud feedback with warming is negatively correlated with its preindustrial value. Our PPE approach takes the model parameter uncertainty into account and emphasizes the critical role of state dependence in understanding past and predicting future climates. Significance StatementThis study focuses on how cloud feedback—one of the most uncertain aspects of climate change—varies as global temperatures rise. We found that the cloud feedback decreases at first with warming and then increases, showing significant variation. This complexity stems from nonlinear thermodynamics, such as the Clapeyron–Clausius relationship, which describes how temperature affects moisture in the atmosphere. Our results indicate that the cloud feedback depends on the level of global warming, which is a significant factor rooted in fundamental physics. Recognizing this dependence is important for studies that aim to interpret past climates and predict future climate changes. 
    more » « less
  2. Abstract Model‐based projections of hydroclimate in western North America (wNA) remain uncertain and depend on how Pacific sea surface temperature (SST) will evolve in the future. However, whether climate models can accurately capture Pacific SST changes and its relationship with wNA hydroclimate in the future remains elusive. Here, we use a synthesis of proxy records and idealized model simulations to elucidate the spatiotemporal evolution and the forcings that drive wNA hydroclimate and Pacific SST during the Holocene (past ∼11,000 years), when the boundary conditions are different from the present. We find that wNA hydroclimate and Pacific SST co‐evolved during the Holocene, where wNA became wetter while the eastern equatorial Pacific and the north Pacific became warmer toward the present. We attribute changes in wNA hydroclimate to precession and carbon dioxide changes, but we are unable to attribute Pacific SST changes unambiguously to any forcing. Our analysis offers a framework to understand the relationship between wNA hydroclimate and Pacific SST and provides an empirical assessment of how these two regions are related over time. 
    more » « less
  3. null (Ed.)
    Abstract Decadal sea surface temperature (SST) fluctuations in the North Atlantic Ocean influence climate over adjacent land areas and are a major source of skill in climate predictions. However, the mechanisms underlying decadal SST variability remain to be fully understood. This study isolates the mechanisms driving North Atlantic SST variability on decadal time scales using low-frequency component analysis, which identifies the spatial and temporal structure of low-frequency variability. Based on observations, large ensemble historical simulations, and preindustrial control simulations, we identify a decadal mode of atmosphere–ocean variability in the North Atlantic with a dominant time scale of 13–18 years. Large-scale atmospheric circulation anomalies drive SST anomalies both through contemporaneous air–sea heat fluxes and through delayed ocean circulation changes, the latter involving both the meridional overturning circulation and the horizontal gyre circulation. The decadal SST anomalies alter the atmospheric meridional temperature gradient, leading to a reversal of the initial atmospheric circulation anomaly. The time scale of variability is consistent with westward propagation of baroclinic Rossby waves across the subtropical North Atlantic. The temporal development and spatial pattern of observed decadal SST variability are consistent with the recent observed cooling in the subpolar North Atlantic. This suggests that the recent cold anomaly in the subpolar North Atlantic is, in part, a result of decadal SST variability. 
    more » « less
  4. Abstract As the last time period when concentrations were near 400 ppm, the Pliocene Epoch (5.33–2.58 Ma) is a useful paleoclimate target for understanding future climate change. Existing estimates of global warming and climate sensitivity during the Pliocene rely mainly on model simulations. To reconstruct Pliocene climate and incorporate paleoclimate observations, we use data assimilation to blend sea‐surface temperature (SST) proxies with model simulations from the Pliocene Modeling Intercomparison Project 2 and the Community Earth System Models. The resulting reconstruction, “plioDA,” suggests that the mid‐Pliocene (3.25 Ma) was warmer than previously thought (on average 4.1°C warmer than preindustrial, 95% CI = 3.0°C–5.3°C), leading to a higher estimate of climate sensitivity (4.8°C per doubling of , 90% CI = 2.6°C–9.9°C). In agreement with previous work, the tropical Pacific zonal SST gradient during the mid‐Pliocene was moderately reduced (°C, 95% CI = –0.4°C). However, this gradient was more reduced during the early Pliocene (4.75 Ma, °C, 95% CI = –°C), a time period that is also warmer than the mid‐Pliocene (4.8°C above preindustrial, 95% CI = 3.6°C–6.2°C). PlioDA reconstructs a fresh North Pacific and salty North Atlantic, supporting Arctic gateway closure and contradicting the presence of Pacific Deep Water formation. Overall, plioDA updates our view of global and spatial climate change during the Pliocene, as well as raising questions about the state of ocean circulation and the drivers of differences between the early and mid‐Pliocene. 
    more » « less
  5. Abstract Aerosol‐cloud interactions (ACI) in warm clouds are the primary source of uncertainty in effective radiative forcing (ERF) during the historical period and, by extension, inferred climate sensitivity. The ERF due to ACI (ERFaci) is composed of the radiative forcing due to changes in cloud microphysics and cloud adjustments to microphysics. Here, we examine the processes that drive ERFaci using a perturbed parameter ensemble (PPE) hosted in CAM6. Observational constraints on the PPE result in substantial constraints in the response of cloud microphysics and macrophysics to anthropogenic aerosol, but only minimal constraint on ERFaci. Examination of cloud and radiation processes in the PPE reveal buffering of ERFaci by the interaction of precipitation efficiency and radiative susceptibility. 
    more » « less