Abstract A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.
more »
« less
Pliocene Warmth and Patterns of Climate Change Inferred From Paleoclimate Data Assimilation
Abstract As the last time period when concentrations were near 400 ppm, the Pliocene Epoch (5.33–2.58 Ma) is a useful paleoclimate target for understanding future climate change. Existing estimates of global warming and climate sensitivity during the Pliocene rely mainly on model simulations. To reconstruct Pliocene climate and incorporate paleoclimate observations, we use data assimilation to blend sea‐surface temperature (SST) proxies with model simulations from the Pliocene Modeling Intercomparison Project 2 and the Community Earth System Models. The resulting reconstruction, “plioDA,” suggests that the mid‐Pliocene (3.25 Ma) was warmer than previously thought (on average 4.1°C warmer than preindustrial, 95% CI = 3.0°C–5.3°C), leading to a higher estimate of climate sensitivity (4.8°C per doubling of , 90% CI = 2.6°C–9.9°C). In agreement with previous work, the tropical Pacific zonal SST gradient during the mid‐Pliocene was moderately reduced (°C, 95% CI = –0.4°C). However, this gradient was more reduced during the early Pliocene (4.75 Ma, °C, 95% CI = –°C), a time period that is also warmer than the mid‐Pliocene (4.8°C above preindustrial, 95% CI = 3.6°C–6.2°C). PlioDA reconstructs a fresh North Pacific and salty North Atlantic, supporting Arctic gateway closure and contradicting the presence of Pacific Deep Water formation. Overall, plioDA updates our view of global and spatial climate change during the Pliocene, as well as raising questions about the state of ocean circulation and the drivers of differences between the early and mid‐Pliocene.
more »
« less
- Award ID(s):
- 1844380
- PAR ID:
- 10576673
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Current global warming scenarios suggest surface temperatures may attain warmth last seen during periods of the early‐to mid‐Pliocene (5.3–3 Ma). Pliocene proxy reconstructions suggest sea surface temperatures 3–9°C warmer than today along midlatitude coastal upwelling sites. Recent climate modeling efforts focused on the mid‐Piacenzian period showed a good model‐data fit over midlatitude upwelling regions, but did not attempt to reproduce proxy records of early‐Pliocene warmth. Evidence also suggests that subtropical continents were wetter then; we show that warm coastal SSTs can be explained via such wetter land conditions near the upwelling sites. Using a global atmospheric model, we show that introducing idealized wetter conditions over subtropical continents leads to reductions in upwelling‐favorable wind events by weakening the land‐sea surface pressure gradient. The resulting weaker coastal upwelling of cold deep water can help explain the inferred warm coastal temperatures.more » « less
-
Abstract. During the mid-Pliocene warm period (mPWP; 3.264–3.025 Ma), atmospheric CO2 concentrations were approximately 400 ppm, and the Antarctic Ice Sheet was substantially reduced compared to today. Antarctica is surrounded by the Southern Ocean, which plays a crucial role in the global oceanic circulation and climate regulation. Using results from the Pliocene Model Intercomparison Project (PlioMIP2), we investigate Southern Ocean conditions during the mPWP with respect to the pre-industrial period. We find that the mean sea surface temperature (SST) warming in the Southern Ocean is 2.8 °C, while global mean SST warming is 2.4 °C. The enhanced warming is strongly tied to a dramatic decrease in sea ice cover over the mPWP Southern Ocean. We also see a freshening of the ocean (sub)surface, driven by an increase in precipitation over the Southern Ocean and Antarctica. The warmer and fresher surface leads to a highly stratified Southern Ocean that can be related to weakening of the deep abyssal overturning circulation. Sensitivity simulations show that the decrease in sea ice cover and enhanced warming is largely a consequence of the reduction in the Antarctic Ice Sheet. In addition, the mPWP geographic boundary conditions are responsible for approximately half of the increase in mPWP SST warming, sea ice loss, precipitation, and stratification increase over the Southern Ocean. From these results, we conclude that a strongly reduced Antarctic Ice Sheet during the mPWP has a substantial influence on the state of the Southern Ocean and exacerbates the changes that are induced by a higher CO2 concentration alone. This is relevant for the long-term future of the Southern Ocean, as we expect melting of the western Antarctic Ice Sheet in the future, an effect that is not currently taken into account in future projections by Coupled Model Intercomparison Project (CMIP) ensembles.more » « less
-
Abstract. The warmer early Pliocene climate featured changes to global sea surface temperature (SST) patterns, namely a reduction in the Equator–pole gradient and the east–west SST gradient in the tropical Pacific, the so-called “permanent El Niño”. Here we investigate the consequences of the SST changes to silicate weathering and thus to atmospheric CO2 on geological timescales. Different SST patterns than today imply regional modifications of the hydrological cycle that directly affect continental silicate weathering in particular over tropical “hotspots” of weathering, such as the Maritime Continent, thus leading to a “weatherability pattern effect”. We explore the impact of Pliocene-like SST changes on weathering using climate model and silicate weathering model simulations, and we deduce CO2 and temperature at carbon cycle equilibrium between solid Earth degassing and silicate weathering. In general, we find large regional increases and decreases in weathering fluxes, and the net effect depends on the extent to which they cancel. Permanent El Niño conditions lead to a small amplification of warming relative to the present day by 0.4 ∘C, suggesting that the demise of the permanent El Niño could have had a small amplifying effect on cooling from the early Pliocene into the Pleistocene. For the reducedEquator–pole gradient, the weathering increases and decreases largely cancel, leading to no detectable difference in global temperature at carbon cycle equilibrium. A robust SST reconstruction of the Pliocene is needed for a quantitative evaluation of the weatherability pattern effect.more » « less
-
Abstract Unlike in the high‐latitude North Atlantic, no deep water is formed in the modern subarctic North Pacific. It has previously been suggested that during climate states different from today, this dichotomy did not endure, and the formation of North Pacific Deepwater (NPDW) occurred in the subarctic North Pacific, which supported an active Pacific meridional overturning circulation (PMOC). Here we provide new records of productivity and sedimentary redox conditions from the central subarctic North Pacific spanning the late Miocene to early Pleistocene. These reconstructions indicate greater‐than‐modern and temporally varying North Pacific export production across the interval of ∼2.7–6 Ma. Our time series, combined with previously published data sets and model output for Pliocene North Pacific Ocean dynamics, support the presence of an active PMOC during the Pliocene, and suggest that the characteristics of NPDW formation varied during this warmer interval of Earth's history. This finding of elevated export production at a time of deep water formation presents a conundrum when considering Quaternary North Pacific Ocean dynamics, where subarctic North Pacific productivity declines during intervals when enhanced overturning is posited to occur. We evaluate our data considering the caveats of both (i.e., Pliocene and Quaternary North Pacific circulation) hypotheses, as well as additional mechanisms unrelated to ocean circulation. Because the Pliocene is a possible analogue for near‐future climate, our results and analyses have important ramifications for our understanding of regional and global climate in the coming decades as the planet continues to warm.more » « less