Although most manufacturers stopped using long-chain per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), short-chain PFASs are still widely employed. Short-chain PFASs are less known in terms of toxicity and have different adsorption behavior from long-chain PFASs. Previous studies have shown electrostatic interaction with the adsorbent to be the dominant mechanism for the removal of short-chain PFASs. In this study, we designed a high charge density cationic quaternized nanocellulose (QNC) to enhance the removal of both short- and long-chain PFASs from contaminated water. Systematic batch adsorption tests were conducted using the QNC adsorbent to compare its efficiency against PFASs with varying chain lengths and functional groups. From the kinetic study, PFBA (perfluorobutanoic acid), PFBS (perfluorobutanesulfonic acid) and PFOS showed rapid adsorption rates, which reached near equilibrium values (>95% of removal) between 1 min to 15 min, while PFOA required a relatively longer equilibration time of 2 h (it obtained 90% of removal within 15 min). According to the isotherm results, the maximum adsorption capacity ( Q m ) of the QNC adsorbent exhibited the following trend: PFOS ( Q m = 559 mg g −1 or 1.12 mmol g −1 ) > PFOA ( Q m = 405 mg g −1 or 0.98 mmol g −1 ) > PFBS ( Q m = 319 mg g −1 or 1.06 mmol g −1 ) > PFBA ( Q m = 121 mg g −1 or 0.57 mmol g −1 ). This adsorption order generally matches the hydrophobicity trend among four PFASs associated with both PFAS chain length and functional group. In competitive studies, pre-adsorbed short-chain PFASs were quickly desorbed by long-chain PFASs, suggesting that the hydrophobicity of the molecule played an important role in the adsorption process on to QNC. Finally, the developed QNC adsorbent was tested to treat PFAS-contaminated groundwater, which showed excellent removal efficiency (>95%) for long-chain PFASs (C7–C9) even at a low adsorbent dose of 32 mg L −1 . However, short-chain PFASs ( i.e. , PFBA and perfluoropentanoic acid (PFPeA)) were poorly removed by the QNC adsorbent (0% and 10% removal, respectively) due to competing constituents in the groundwater matrix. This was further confirmed by controlled experiments that revealed a drop in the performance of QNC to remove short-chain PFASs at elevated ionic strength (NaCl), but not for long-chain PFASs, likely due to charge neutralization of the anionic functional group of PFASs by inorganic cations. Overall, the QNC adsorbent featured improved PFAS adsorption capacity at almost two-fold of PFAS removal by granular activated carbons, especially for short-chain PFASs. We believe, QNC can complement the use of common treatment methods such as activated carbon or ionic exchange resin to remove a wide range of PFAS pollutants, heading towards the complete remediation of PFAS contamination.
more »
« less
Characterization of a mixed mode fluorocarbon/weak anion exchange sorbent for the separation of perfluoroalkyl substances
The ubiquitous presence and persistence of per‐ and polyfluoroalkyl substances (PFAS) in the environment have raised concerns in the scientific community. Current research efforts are prioritizing effective PFAS remediation through novel sorbents with orthogonal interaction mechanisms. Recognized sorption mechanisms between PFAS and sorbents include hydrophobic, electrostatic, and fluorine‐fluorine interaction. The interplay of these mechanisms contributes significantly to improved sorption capacity and selectivity in PFAS separations. In this study, a primary/secondary amine‐functionalized polystyrene‐divinylbenzene (Sepra‐WAX) polymer was modified to create a fluorinated WAX resin (Sepra‐WAX‐KelF‐PEI). The synthesis intermediate (Sepra‐WAX‐KelF) was also tested to assess the improvement of the final product (Sepra‐WAX‐KelF‐PEI). The adsorption capacity of Sepra‐WAX, Sepra‐WAX‐KelF, and Sepra‐WAX‐KelF‐PEI, and their interactions with PFAS were evaluated. The effect of pH, ionic strength, and organic solvents on PFAS sorption in aqueous solution was also investigated. The sorbents showed varied adsorption capacities for perfluorooctanoic acid, perfluoropentanoic acid, perfluoro‐n‐decanoic acid, and hexafluoropropylene oxide dimer acid, with the average extraction capacity of the four analytes being Sepra‐WAX‐KelF‐PEI (523 mg/g) > Sepra‐WAX (353 mg/g) > Sepra‐WAX‐KelF (220 mg/g). Sepra‐WAX‐KelF‐PEI provided the highest adsorption capacity for all analytes tested, proving that the combination of electrostatic and hydrophobic/fluorophilic interactions is crucial for the effective preconcentration of PFAS and its future applications for PFAS remediation from aqueous solutions.
more »
« less
- Award ID(s):
- 2432184
- PAR ID:
- 10643484
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Separation Science
- Volume:
- 47
- Issue:
- 16
- ISSN:
- 1615-9306
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With drinking water regulations forthcoming for per- and polyfluoroalkyl substances (PFAS), the need for cost-effective treatment technologies has become urgent. Adsorption is a key process for removing or concentrating PFAS from water; however, conventional adsorbents operated in packed beds suffer from mass transfer limitations. The objective of this study was to assess the mass transfer performance of a porous polyamide adsorptive membrane for removing PFAS from drinking water under varying conditions. We conducted batch equilibrium and dynamic adsorption experiments for perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluorobutanesulfonic acid, and undecafluoro-2-methyl-3-oxahexanoic acid (i.e., GenX). We assessed various operating and water quality parameters, including flow rate (pore velocity), pH, ionic strength (IS), and presence of dissolved organic carbon. Outcomes revealed that the porous adsorptive membrane was a mass transfer-efficient platform capable of achieving dynamic capacities similar to equilibrium capacities at fast interstitial velocities. The adsorption mechanism of PFAS to the membrane was a mixture of electrostatic and hydrophobic interactions, with pH and IS controlling which interaction was dominant. The adsorption capacity of the membrane was limited by its surface area, but its site density was approximately five times higher than that of granular activated carbon. With advances in molecular engineering to increase the capacity, porous adsorptive membranes are well suited as alternative adsorbent platforms for removing PFAS from drinking water.more » « less
-
A novel composite hydrogel bead composed of sodium alginate (SA) and aldehyde cellulose nanocrystal (DCNC) was developed for antibiotic remediation through a one-step cross-linking process in a calcium chloride bath. Structural and physical properties of the hydrogel bead, with varying composition ratios, were analyzed using techniques such as BET analysis, SEM imaging, tensile testing, and rheology measurement. The optimal composition ratio was found to be 40% (SA) and 60% (DCNC) by weight. The performance of the SA–DCNC hydrogel bead for antibiotic remediation was evaluated using doxycycline (DOXY) and three other tetracyclines in both single- and multidrug systems, yielding a maximum adsorption capacity of 421.5 mg g−1 at pH 7 and 649.9 mg g−1 at pH 11 for DOXY. The adsorption mechanisms were investigated through adsorption studies focusing on the effects of contact time, pH, concentration, and competitive contaminants, along with X-ray photoelectron spectroscopy analysis of samples. The adsorption of DOXY was confirmed to be the synergetic effects of chemical reaction, electrostatic interaction, hydrogen bonding, and pore diffusion/surface deposition. The SA–DCNC composite hydrogel demonstrated high reusability, with more than 80% of its adsorption efficiency remaining after five cycles of the adsorption–desorption test. The SA–DCNC composite hydrogel bead could be a promising biomaterial for future antibiotic remediation applications in both pilot and industrial scales because of its high adsorption efficiency and ease of recycling.more » « less
-
In this study, four geopolymer sorbents GP0, GP10, GP30 and GP50 were synthesized using volcanic ash (VA) and metakaolin (MK) blends as precursors with 0, 10, 30 and 50% MK content by mass, respectively. The materials were characterized by X-ray fuorescence (XRF), X-ray difraction (XRD), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) surface area analyses, revealing successful geopolymerization of the precursors and increasing surface area with increasing MK content. The sorption performance of the VA, MK and VA-MK geopolymers was then evaluated for the removal of cationic methylene blue (MB) dye from aqueous media. Sorption capacity was independent of composition, providing fexibility in sorbent synthesis. Sorption rate, on the other hand, was 3–8 times greater for the VA-MK geopolymers than the precursor materials. The equilibrium adsorption data were suitably explained by the Freundlich model, denoting multilayer adsorption onto a heterogeneous adsorption surface with higher Freundlich afnity constant (KF) for geopolymers than VA. The adsorption kinetics obeyed the pseudo-second-order (PSO) kinetic law with an average of 98% removal efciency in 30 min. MB uptake was pH-dependent and driven by electrostatic chemisorption interactions. These results motivate further studies on the use of locally sourced geopolymers for water purifcation applications.more » « less
-
Abstract The escalating presence of per‐ and polyfluoroalkyl substances (PFAS) in drinking water poses urgent public health concerns, necessitating effective removal. This study presents a groundbreaking approach, using viologen to synthesize covalent organic framework nanospheres: MELEM‐COF and MEL‐COF. Characterized by highly crystalline features, these nanospheres exhibit exceptional affinity for diverse anionic PFAS compounds, achieving simultaneous removal of multiple contaminants within 30 min. Investigating six anionic PFAS compounds, MEL‐ and MELEM‐COFs achieved 90.0–99.0% removal efficiency. The integrated analysis unveils the synergistic contributions of COF morphology and functional properties to PFAS adsorption. Notably, MELEM‐COF, with cationic surfaces, exploits electrostatic and dipole interactions, with a 2500 mg g−1adsorption capacity—surpassing all reported COFs to date. MELEM‐COF exhibits rapid exchange kinetics, reaching equilibrium within 30 min. These findings deepen the understanding of COF materials and promise avenues for refining COF‐based adsorption strategies.more » « less
An official website of the United States government
