is an experimental search for dark matter axions. It uses a solenoidal dc magnetic field to convert an axion dark-matter signal to an ac electromagnetic response in a coaxial copper pickup. The current induced by this axion signal is measured by dc SQUIDs. is designed to be sensitive to Kim-Shifman-Vainshtein-Zakharov (KSVZ) and Dine-Fischler-Srednicki-Zhitnisky (DFSZ) QCD axion models in the 10–200 MHz ( ) range, and to axions with over 5–30 MHz as an extended goal. In this work, we present the electromagnetic modeling of the response of the experiment to an axion signal over the full frequency range of , which extends from the low-frequency, lumped-element limit to a regime where the axion Compton wavelength is only a factor of 2 larger than the detector size. With these results, we determine the live time and sensitivity of the experiment. The primary science goal of sensitivity to DFSZ axions across 30–200 MHz can be achieved with a live scan time of 2.9 years. 
                        more » 
                        « less   
                    This content will become publicly available on October 1, 2026
                            
                            First Limits on Light Dark Matter Interactions in a Low Threshold Two-Channel Athermal Phonon Detector from the TESSERACT Collaboration
                        
                    
    
            We present results of a search for spin-independent dark matter-nucleus interactions in a by 1 mm thick (0.233 g) high-resolution silicon athermal phonon detector operated above ground. For interactions in the substrate, this detector achieves an rms baseline energy resolution of (statistical error), the best for any athermal phonon detector to date. With an exposure of hours, we place the most stringent constraints on dark matter masses between 44 and , with the lowest unexplored cross section of at . We employ a conservative salting technique to reach the lowest dark matter mass ever probed via direct detection experiment. This constraint is enabled by two-channel rejection of low energy backgrounds that are coupled to individual sensors. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10643505
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Physical Review Journals
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 135
- Issue:
- 16
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This Letter reports new results from the HAYSTAC experiment’s search for dark matter axions in our galactic halo. It represents the widest search to date that utilizes squeezing to realize subquantum limited noise. The new results cover of newly scanned parameter space in the mass ranges and . No statistically significant evidence of an axion signal was observed, excluding couplings and at the 90% confidence level over the respective region. By combining this data with previously published results using HAYSTAC’s squeezed state receiver, a total of of parameter space has now been scanned between , excluding at the 90% confidence level. These results demonstrate the squeezed state receiver’s ability to probe axion models over a significant mass range while achieving a scan rate enhancement relative to a quantum-limited experiment. Published by the American Physical Society2025more » « less
- 
            We present the first measurement of nuclear recoils from solar neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of resulted in 37 observed events above 0.5 keV, with ( ) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of . The measured solar neutrino flux of is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted cross section on Xe of is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. Published by the American Physical Society2024more » « less
- 
            We report the results of the first search for decays to the final state using of data collected at the resonance with the Belle detector at the KEKB asymmetric-energy collider. The results are interpreted in terms of both direct baryon-number-violating decay and oscillations which follow the standard model decay . We observe no evidence for baryon number violation and set the 95% confidence-level upper limits on the ratio of baryon-number-violating and standard model branching fractions to be and on the effective angular frequency of mixing in oscillations to be (equivalent to ). Published by the American Physical Society2024more » « less
- 
            We search for excited charmed baryons in the system using a data sample corresponding to an integrated luminosity of . The data were collected by the Belle detector at the KEKB asymmetric-energy collider. No significant signals are found in the mass spectrum, including the known and . Clear and signals are observed in the mass spectrum. We set upper limits at 90% credibility level on ratios of branching fractions of and decaying to relative to of for the and for the . We measure ratios of branching fractions of and decaying to relative to of for the and for the . Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
