skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of switchgrass ( Panicum virgatum L.) PvKSL1 as a levopimaradiene/abietadiene‐type diterpene synthase
Abstract The diverse class of plant diterpenoid metabolites serves important functions in mediating growth, chemical defence, and ecological adaptation. In major monocot crops, such as maize (Zea mays), rice (Oryza sativa), and barley (Hordeum vulgare), diterpenoids function as core components of biotic and abiotic stress resilience. Switchgrass (Panicum virgatum) is a perennial grass valued as a stress‐resilient biofuel model crop. Previously we identified an unusually large diterpene synthase family that produces both common and species‐specific diterpenoids, several of which accumulate in response to abiotic stress.Here, we report discovery and functional characterization of a previously unrecognized monofunctional class I diterpene synthase (PvKSL1) viain vivoco‐expression assays with different copalyl pyrophosphate (CPP) isomers, structural and mutagenesis studies, as well as genomic and transcriptomic analyses.In particular, PvKSL1 convertsent‐CPP intoent‐abietadiene,ent‐palustradiene,ent‐levopimaradiene, andent‐neoabietadiene via a 13‐hydroxy‐8(14)‐ent‐abietene intermediate. Notably, although featuring a distinctent‐stereochemistry, this product profile is near‐identical to bifunctional (+)‐levopimaradiene/abietadiene synthases occurring in conifer trees. PvKSL1 has three of four active site residues previously shown to control (+)‐levopimaradiene/abietadiene synthase catalytic specificity. However, mutagenesis studies suggest a distinct catalytic mechanism in PvKSL1. Genome localization ofPvKSL1distant from other diterpene synthases, and its phylogenetic distinctiveness from known abietane‐forming diterpene synthases, support an independent evolution of PvKSL1 activity. Albeit at low levels,PvKSL1gene expression predominantly in roots suggests a role of diterpenoid formation in belowground tissue.Together, these findings expand the known chemical and functional space of diterpenoid metabolism in monocot crops.  more » « less
Award ID(s):
2312181
PAR ID:
10643554
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant Biology
Volume:
27
Issue:
5
ISSN:
1435-8603
Format(s):
Medium: X Size: p. 698-709
Size(s):
p. 698-709
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary The mint family (Lamiaceae) is well documented as a rich source of terpene natural products. More than 200 diterpene skeletons have been reported from mints, but biosynthetic pathways are known for just a few of these.We crossreferenced chemotaxonomic data with publicly available transcriptomes to select common selfheal (Prunella vulgaris) and its highly unusual vulgarisin diterpenoids as a case study for exploring the origins of diterpene skeletal diversity in Lamiaceae. Four terpene synthases (TPS) from the TPS‐a subfamily, including two localised to the plastid, were cloned and functionally characterised. Previous examples of TPS‐a enzymes from Lamiaceae were cytosolic and reported to act on the 15‐carbon farnesyl diphosphate. Plastidial TPS‐a enzymes using the 20‐carbon geranylgeranyl diphosphate are known from other plant families, having apparently arisen independently in each family.All four new enzymes were found to be active on multiple prenyl‐diphosphate substrates with different chain lengths and stereochemistries. One of the new enzymes catalysed the cyclisation of geranylgeranyl diphosphate into 11‐hydroxy vulgarisane, the likely biosynthetic precursor of the vulgarisins.We uncovered the pathway to a rare diterpene skeleton. Our results support an emerging paradigm of substrate and compartment switching as important aspects of TPS evolution and diversification. 
    more » « less
  2. Abstract A new bicyclic diterpenoid, benditerpenoic acid, was isolated from soil‐dwellingStreptomycessp. (CL12‐4). We sequenced the bacterial genome, identified the responsible biosynthetic gene cluster, verified the function of the terpene synthase, and heterologously produced the core diterpene. Comparative bioinformatics indicated thisStreptomycesstrain is phylogenetically unique and possesses nine terpene synthases. The absolute configurations of the newtrans‐fused bicyclo[8.4.0]tetradecanes were achieved by extensive spectroscopic analyses, including Mosher's analysis,J‐based coupling analysis, and computations based on sparse NMR‐derived experimental restraints. Interestingly, benditerpenoic acid exists in two distinct ring‐flipped bicyclic conformations with a rotational barrier of ≈16 kcal mol−1in solution. The diterpenes exhibit moderate antibacterial activity against Gram‐positive bacteria including methicillin and multi‐drug resistantStaphylococcus aureus. This is a rare example of an eunicellane‐type diterpenoid from bacteria and the first identification of a diterpene synthase and biosynthetic gene cluster responsible for the construction of the eunicellane scaffold. 
    more » « less
  3. Summary All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development.Genetic and morphological analysis of the classic maizeadherent1(ad1) mutant was combined with genome‐wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling offdl1mutants.We show thatAD1encodes an epidermally‐expressed 3‐KETOACYL‐CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis inad1mutants indicates thatAD1functions in the formation of very‐long‐chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present inAD1regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified.Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation. 
    more » « less
  4. Summary Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood.We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses.SDG33andSDG34gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli.The double but not the single mutants show resistance to the fungal pathogenBotrytis cinerea.Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought.Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations inSDG33andSDG34are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade‐offs, through modification of histone epigenetic marks. 
    more » « less
  5. Summary Reactive oxygen species (ROS) produced in chloroplasts cause oxidative damage, but also signal to initiate chloroplast quality control pathways, cell death, and gene expression. TheArabidopsis thaliana plastid ferrochelatasetwo(fc2) mutant produces the ROS singlet oxygen in chloroplasts that activates such signaling pathways, but the mechanisms are largely unknown.Here we characterize onefc2suppressor mutation and map it toCYTIDINE TRIPHOSPHATE SYNTHASE TWO(CTPS2), which encodes one of five enzymes in Arabidopsis necessary forde novocytoplasmic CTP (and dCTP) synthesis.Thectps2mutation reduces chloroplast transcripts and DNA content without similarly affecting mitochondria. Chloroplast nucleic acid content and singlet oxygen signaling are restored by exogenous feeding of the dCTP precursor deoxycytidine, suggestingctps2blocks signaling by limiting nucleotides for chloroplast genome maintenance. An investigation of CTPS orthologs in Brassicaceae showed CTPS2 is a member of an ancient lineage distinct from CTPS3. Complementation studies confirmed this analysis; CTPS3 was unable to compensate for CTPS2 function in providing nucleotides for chloroplast DNA and signaling.Our studies link cytoplasmic nucleotide metabolism with chloroplast quality control pathways. Such a connection is achieved by a conserved clade of CTPS enzymes that provide nucleotides for chloroplast function, thereby allowing stress signaling to occur. 
    more » « less