skip to main content


Title: Promiscuous terpene synthases from Prunella vulgaris highlight the importance of substrate and compartment switching in terpene synthase evolution
Summary

The mint family (Lamiaceae) is well documented as a rich source of terpene natural products. More than 200 diterpene skeletons have been reported from mints, but biosynthetic pathways are known for just a few of these.

We crossreferenced chemotaxonomic data with publicly available transcriptomes to select common selfheal (Prunella vulgaris) and its highly unusual vulgarisin diterpenoids as a case study for exploring the origins of diterpene skeletal diversity in Lamiaceae. Four terpene synthases (TPS) from the TPS‐a subfamily, including two localised to the plastid, were cloned and functionally characterised. Previous examples of TPS‐a enzymes from Lamiaceae were cytosolic and reported to act on the 15‐carbon farnesyl diphosphate. Plastidial TPS‐a enzymes using the 20‐carbon geranylgeranyl diphosphate are known from other plant families, having apparently arisen independently in each family.

All four new enzymes were found to be active on multiple prenyl‐diphosphate substrates with different chain lengths and stereochemistries. One of the new enzymes catalysed the cyclisation of geranylgeranyl diphosphate into 11‐hydroxy vulgarisane, the likely biosynthetic precursor of the vulgarisins.

We uncovered the pathway to a rare diterpene skeleton. Our results support an emerging paradigm of substrate and compartment switching as important aspects of TPS evolution and diversification.

 
more » « less
Award ID(s):
1737898
NSF-PAR ID:
10377678
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
223
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
p. 323-335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Analysis of the updated reference tomato genome found 34 full‐length TPS genes and 18 TPS pseudogenes.

    Biochemical analysis has now identified the catalytic activities of all enzymes encoded by the 34 TPS genes: one isoprene synthase, 10 exclusively or predominantly monoterpene synthases, 17 sesquiterpene synthases and six diterpene synthases. Among the monoterpene and sesquiterpene and diterpene synthases, some usetrans‐prenyl diphosphates, some usecis‐prenyl diphosphates and some use both. The isoprene synthase is cytosolic; six monoterpene synthases are plastidic, and four are cytosolic; the sesquiterpene synthases are almost all cytosolic, with the exception of one found in the mitochondria; and three diterpene synthases are found in the plastids, one in the cytosol and two in the mitochondria.

    Newtrans‐prenyltransferases (TPTs) were characterised; together with previously characterised TPTs andcis‐prenyltransferases (CPTs), tomato plants can make allcisandtransC10, C15and C20prenyl diphosphates. Every type of plant tissue examined expresses some TPS genes and some TPTs and CPTs.

    Phylogenetic comparison of the TPS genes from tomato and Arabidopsis shows expansions in each clade of the TPS gene family in each lineage (and inferred losses), accompanied by changes in subcellular localisations and substrate specificities.

     
    more » « less
  2. Abstract

    Insects have evolved a chemical communication system using terpenoids, a structurally diverse class of specialized metabolites, previously thought to be exclusively produced by plants and microbes. Gene discovery, bioinformatics, and biochemical characterization of multiple insect terpene synthases (TPSs) revealed that isopentenyl diphosphate synthases (IDS), enzymes from primary isoprenoid metabolism, are their likely evolutionary progenitors. However, the mutations underlying the emergence of the TPS function remain a mystery. To address this gap, we present the first structural and mechanistic model for the evolutionary emergence of TPS function in insects. Through identifying key mechanistic differences between IDS and TPS enzymes, we hypothesize that the loss of isopentenyl diphosphate (IPP) binding motifs strongly correlates with the gain of the TPS function. Based on this premise, we have elaborated the first explicit structural definition of isopentenyl diphosphate‐binding motifs (IBMs) and used the IBM definitions to examine previously characterized insect IDSs and TPSs and to predict the functions of as yet uncharacterized insect IDSs. Consistent with our hypothesis, we observed a clear pattern of disruptive substitutions to IBMs in characterized insect TPSs. In contrast, insect IDSs maintain essential consensus residues for binding IPP. Extending our analysis, we constructed the most comprehensive phylogeny of insect IDS sequences (430 full length sequences from eight insect orders) and used IBMs to predict the function of TPSs. Based on our analysis, we infer multiple, independent TPS emergence events across the class of insects, paving the way for future gene discovery efforts.

     
    more » « less
  3. Summary

    Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack.

    We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in maturePinus edulisunder experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostomasp.) ofIps confusus, the main bark beetle colonizing this tree, to induce a defensive response.

    Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted forc.23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site.

    Our results show thatde novoterpene synthesis represents only a fraction of the total measured phloem terpenes inP. edulisfollowing fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance ofde novoterpene synthesis in a tree's induced defense response.

     
    more » « less
  4. Summary

    In the natural pesticides known as pyrethrins, which are esters produced in flowers ofTanacetum cinerariifolium(Asteraceae), the monoterpenoid acyl moiety is pyrethric acid or chrysanthemic acid.

    We show here that pyrethric acid is produced from chrysanthemol in six steps catalyzed by four enzymes, the first five steps occurring in the trichomes covering the ovaries and the last one occurring inside the ovary tissues.

    Three steps involve the successive oxidation of carbon 10 (C10) to a carboxylic group by TcCHH, a cytochrome P450 oxidoreductase. Two other steps involve the successive oxidation of the hydroxylated carbon 1 to give a carboxylic group by TcADH2 and TcALDH1, the same enzymes that catalyze these reactions in the formation of chrysanthemic acid. The ultimate result of the actions of these three enzymes is the formation of 10‐carboxychrysanthemic acid in the trichomes. Finally, the carboxyl group at C10 is methylated by TcCCMT, a member of theSABATHmethyltransferase family, to give pyrethric acid. This reaction occurs mostly in the ovaries.

    Expression inN. benthamianaplants of all four genes encoding aforementioned enzymes, together with TcCDS, a gene that encodes an enzyme that catalyzes the formation of chrysanthemol, led to the production of pyrethric acid.

     
    more » « less
  5. Abstract The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris , Plectranthus barbatus , and Leonotis leonurus . We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites. 
    more » « less