skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 7, 2026

Title: Renormalization of Mechanical Properties in Fluctuating Active Membranes
We develop a theoretical framework to quantify how active forces renormalize the effective bending rigidity, Gaussian modulus, and surface tension of thermally fluctuating membranes. Building on classical statistical mechanics, we extend the analysis to include nonequilibrium active forces, both direct forces and those coupled to membrane curvature, within a nonlinear continuum formulation. Our model also incorporates hydrodynamic interactions mediated by the surrounding viscous fluid, which significantly alter the fluctuation spectrum. We find that direct active forces enhance long-wavelength undulations, leading to a substantial reduction in both the effective bending rigidity and surface tension, with the extent of softening strongly modulated by fluid viscosity. In contrast, curvature-coupled active forces primarily influence intermediate and short-wavelength fluctuations and show minimal sensitivity to viscosity. Together, these findings provide key insights into the nonequilibrium mechanics of active membranes and yield testable predictions for interpreting fluctuation spectra in both biological contexts and engineered membrane systems.  more » « less
Award ID(s):
2237530 2327899
PAR ID:
10643588
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Mechanical Engineers (ASME)
Date Published:
Journal Name:
Journal of Applied Mechanics
Volume:
92
Issue:
12
ISSN:
0021-8936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Membrane bending is an extensively studied problem from both modeling and experimental perspectives because of the wide implications of curvature generation in cell biology. Many of the curvature generating aspects in membranes can be attributed to interactions between proteins and membranes. These interactions include protein diffusion and formation of aggregates due to protein–protein interactions in the plane of the membrane. Recently, we developed a model that couples the in-plane flow of lipids and diffusion of proteins with the out-of-plane bending of the membrane. Building on this work, here, we focus on the role of explicit aggregation of proteins on the surface of the membrane in the presence of membrane bending and diffusion. We develop a comprehensive framework that includes lipid flow, membrane bending, the entropy of protein distribution, along with an explicit aggregation potential and derive the governing equations for the coupled system. We compare this framework to the Cahn–Hillard formalism to predict the regimes in which the proteins form patterns on the membrane. We demonstrate the utility of this model using numerical simulations to predict how aggregation and diffusion, when coupled with curvature generation, can alter the landscape of membrane–protein interactions. 
    more » « less
  2. A widely used method to measure the bending rigidity of bilayer membranes is fluctuation spectroscopy, which analyses the thermally-driven membrane undulations of giant unilamellar vesicles recorded with either phase-contrast or confocal microscopy. Here, we analyze the fluctuations of the same vesicle using both techniques and obtain consistent values for the bending modulus. We discuss the factors that may lead to discrepancies. 
    more » « less
  3. Curvature mediated elastic interactions between inclusions in lipid membranes have been analyzed using both theoretical and computational methods. Entropic corrections to these interactions have also been studied. Here we show that elastic and entropic forces between inclusions in membranes can compete under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance between the inclusions is less than this critical separation then entropic interactions dominate and there is an attractive force between them, while if the distance is more than the critical separation then elastic interactions dominate and there is a repulsive force between them. We assume the inclusions to be rigid and use a previously developed semi-analytic method based on Gaussian integrals to compute the free energy of a membrane with inclusions.Weshow that the critical separation between inclusions decreases with increasing bending modulus and with increasing tension. We also compute the projected area of a membrane with rigid inclusions under tension and find that the trend of the effective bending modulus as a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes. 
    more » « less
  4. Curvature mediated elastic interactions between inclusions in lipid membranes have been analyzed using both theoretical and computational methods. Entropic corrections to these interactions have also been studied. Here we show that elastic and entropic forces between inclusions in membranes can compete under certain conditions to a yield a maximum in the free energy at a critical separation. If the distance between the inclusions is less than this critical separation then entropic interactions dominate and there is an attractive force between them, while if the distance is more than the critical separation then elastic interactions dominate and there is a repulsive force between them. We assume the inclusions to be rigid and use a previously developed semi-analytic method based on Gaussian integrals to compute the free energy of a membrane with inclusions.Weshow that the critical separation between inclusions decreases with increasing bending modulus and with increasing tension. We also compute the projected area of a membrane with rigid inclusions under tension and find that the trend of the effective bending modulus as a function of area fraction occupied by inclusions is in agreement with earlier results. Our technique can be extended to account for entropic effects in other methods which rely on quadratic energies to study the interactions of inclusions in membranes. 
    more » « less
  5. Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure–property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach—combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations—we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer’s packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure–property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol’s role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid–protein interactions. 
    more » « less