Augmented Reality (AR) technology offers the possibility of experiencing virtual images with physical objects and provides high quality hands-on experiences in an engineering lab environment. However, students still need help navigating the educational content in AR environments due to a mismatch problem between computer-generated 3D images and actual physical objects. This limitation could significantly influence their learning processes and workload in AR learning. In addition, a lack of student awareness of their learning process in AR environments could negatively impact their performance improvement. To overcome those challenges, we introduced a virtual instructor in each AR module and asked a metacognitive question to improve students’ metacognitive skills. The results showed that student workload was significantly reduced when a virtual instructor guided students during AR learning. Also, there is a significant correlation between student learning performance and workload when they are overconfident. The outcome of this study will provide knowledge to improve the AR learning environment in higher education settings.
more »
« less
The Effects of a Virtual Instructor with Realistic Lip Sync in an Augmented Reality Environment
In this study, we explore the impact of incorporating a virtual instructor with realistic lip-syncing in an augmented reality (AR) learning environment. The study is particularly focused on understanding if this enhancement can reduce students’ mental workload and improve system usability and performance in AR learning. The research stems from previous feedback indicating that a virtual instructor without facial movements was perceived as “creepy” and “distracting.” The updated virtual instructor includes facial animations, such as blinking and synchronized lip movements, especially during lecture explanations. The study aims to determine if there are significant changes in mental workload and usability differences between the AR systems with and without the enhanced virtual instructor. The study found significant differences in the usability scores in some questions. However, there was no significant difference in the mental workload between them.
more »
« less
- Award ID(s):
- 2202108
- PAR ID:
- 10643765
- Publisher / Repository:
- Springer Nature Switzerland
- Date Published:
- ISBN:
- 978-3-031-61041-7
- Page Range / eLocation ID:
- 3 to 12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the digital learning landscape, Augmented Reality (AR) is revolutionizing instructional methodologies. This study shifts focus to explore the impact of AR-based lectures on pupil dilation as a biomarker of mental demand. By analyzing pupil dilation with cognitive load assessment tools like the NASA Task Load Index, we aim to understand the cognitive implications of prolonged exposure to AR in educational settings. We hypothesize that variations in pupil size can be indicative of cognitive load, correlating with the mental demands imposed by AR lectures. Preliminary findings suggest a significant relationship between increased pupil dilation and heightened mental workload during AR engagements. This study highlights a new way to measure cognitive workload in AR environments using pupil dilation data.more » « less
-
null (Ed.)Conventional work posture training tools included pamphlets, one-time training orientation, and/or videos. These tools did not always yield satisfactory training outcomes, and the incident rate of work-related musculoskeletal disorders did not substantially lower. In this research, modern augmented reality (AR) technology was leveraged to deliver interactive, holistic, whole-body visual information to convey safe work postures. The developmental procedure followed DMAIC by first defining specifications of training content, which led to the development of the training tool, including 3D reconstruction of a virtual instructor and building of user interface based on user-centered framework. This AR training tool was measured and analyzed through usability evaluation, and quantitative and qualitative data were obtained for cross-validation and usability issue source identification. Findings revealed the utility of 3D reconstruction of a virtual instructor and practicality of adopting conventional usability evaluation method for AR user interface usability evaluation. Feedback from the usability evaluation via questionnaire, think aloud, and post-task open-ended responses are employed to iteratively design the next version of the AR posture training tool.more » « less
-
null (Ed.)Mental workload represents the mental resources an individual devotes to a task. In a building environment, understanding how ambient thermal conditions affect occupants' mental workload offers an opportunity to achieve optimal thermal settings for the heating, ventilation, and air conditioning (HVAC) systems. However, directly measuring mental workload on a large and continuous scale requires occupants to perform subjective tests or wear electroencephalogram (EEG) or similar devices, which is impractical. This paper assesses the feasibility of using infrared facial thermography captured by a low-cost thermal camera to disclose mental workload. An experiment was conducted to measure the facial skin temperature while subjects performed cognitive tasks in three different thermal environments, representing occupants' thermal sensation of slightly cool, neutral, and slightly warm. Mental workload was measured using an EEG headset to eliminate subjective bias. The correlations between facial temperature and mental workload vary with different individuals and thermal conditions. Relatively strong correlations are found in the neutral environment and in the regions of ears, mouth, and neck. The results also suggest that future work should collect data under extended experiment duration. This is because it was observed that the response of facial skin temperature to mental workload varies with task type; thus, increasing the repetitiveness for each type of task or using more challenging tasks in the experiment could potentially lead to more insights on this relationship.more » « less
-
We present a mixed methods user study evaluating augmented reality (AR) as a visualization technique for use in astronomy journal publications. This work is motivated by the highly spatial nature of scientific visualizations employed in astronomy, including spatial reasoning tasks for hypothesis generation and scientific communications. In this 52-person user study, we evaluate two AR approaches (one traditional tabletop projection and the other with a ‘tangible’ aid) as spatial 3D visualization techniques, as compared to a baseline 3D rendering on a phone. We identify a significant difference in mental and physical workload between the two AR conditions in men and women. Qualitatively, through thematic coding of interviews, we identify notable observed differences ranging from device-specific physical challenges, to subdomain-specific utility within astronomy. The confluence of quantitative and qualitative results suggest a tension between workload and engagement when comparing non-AR and AR technologies. We summarize these findings and contribute them for reference in data visualization research furthering novel scientific communications in astronomy journal publications.more » « less
An official website of the United States government

