skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heteroatom decorated polythiourethane sorbent for copper ( II ) extraction in wastewater treatment
Abstract Copper ions in wastewater present substantial environmental hazards, toxic to aquatic species and prone to bioaccumulation. Addressing this, we present a novel cross‐linked polythiourethane (C‐PTU) as a promising chelating adsorbent for the effective removal of copper ions from wastewater. A new monomer, 5‐(2,2,2‐trifluoroacetamide) benzene‐1,3‐bis(carbonyl) isothiocyanate (TFA‐ITC), was synthesized and further condensed with a 1,4‐butane diol to produce a trifluoroacetamide functionalized polythiourethane (TFA‐PTU) and subsequently generating amine functionalized polythiourethane (A‐PTU). The cross‐linking reaction was carried out through amino groups present on the polymer backbone with terephthaloyl chloride, resulting in the formation of C‐PTU. The monomer and polymers underwent characterization using Fourier transform infrared,1H, and13C nuclear magnetic resonance spectroscopy, with X‐ray diffraction analyzing the resin's chain alignment. Thermogravimetric and differential scanning calorimetry assessed C‐PTU's thermal properties. The adsorption process for Cu(II) ions was studied using atomic absorption spectroscopy, optimizing conditions for maximal uptake. Results revealed that C‐PTU exhibited a significant adsorption capacity for Cu(II) ions, reaching 67% after a 2 h contact time, with optimal adsorption occurring at pH 6. The Langmuir adsorption isotherm described the sorption mechanism, indicating favorable monolayer cation adsorption via coordination with donor sites on C‐PTU. This research presents a viable solution for copper ion contamination in wastewater, illustrating C‐PTU as an efficient, environmentally friendly adsorbent, marking progress toward cleaner water resources.  more » « less
Award ID(s):
2113695
PAR ID:
10643784
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer Engineering & Science
Volume:
64
Issue:
7
ISSN:
0032-3888
Format(s):
Medium: X Size: p. 3109-3119
Size(s):
p. 3109-3119
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A highly porous adsorbent based on a metal–organic framework was successfully designed and applied as an innovative adsorbent in the solid phase for the heavy metal removal. MIL-125 was densely decorated by 2-imino-4-thiobiuret functional groups, which generated a green, rapid, and efficacious adsorbent for the uptake of Hg( ii ) and Pb( ii ) from aqueous solutions. ITB-MIL-125 showed a high adsorption affinity toward mercury( ii ) ions of 946.0 mg g −1 due to covalent bond formation with accessible sulfur-based functionality. Different factors were studied, such as the initial concentration, pH, contact time, and competitive ions, under same circumstances at the room temperature. Moreover, the experimental adsorption data were in excellent agreement with the Langmuir adsorption isotherm and pseudo-second order kinetics. At a high concentration of 100 ppm mixture of six metals, ITB-MIL-125 exhibited a high adsorption capacity, reaching more than 82% of Hg( ii ) compared to 62%, 30%, 2%, 1.9%, and 1.6% for Pb( ii ), Cu( ii ), Cd( ii ), Ni( ii ), and Zn( ii ), respectively. 
    more » « less
  2. Commercially available benzophenone imine (HNCPh 2 ) reacts with β-diketiminato copper( ii ) tert -butoxide complexes [Cu II ]–O t Bu to form isolable copper( ii ) ketimides [Cu II ]–NCPh 2 . Structural characterization of the three coordinate copper( ii ) ketimide [Me 3 NN]Cu–NCPh 2 reveals a short Cu-N ketimide distance (1.700(2) Å) with a nearly linear Cu–N–C linkage (178.9(2)°). Copper( ii ) ketimides [Cu II ]–NCPh 2 readily capture alkyl radicals R˙ (PhCH(˙)Me and Cy˙) to form the corresponding R–NCPh 2 products in a process that competes with N–N coupling of copper( ii ) ketimides [Cu II ]–NCPh 2 to form the azine Ph 2 CN–NCPh 2 . Copper( ii ) ketimides [Cu II ]–NCAr 2 serve as intermediates in catalytic sp 3 C–H amination of substrates R–H with ketimines HNCAr 2 and t BuOO t Bu as oxidant to form N -alkyl ketimines R–NCAr 2 . This protocol enables the use of unactivated sp 3 C–H bonds to give R–NCAr 2 products easily converted to primary amines R–NH 2 via simple acidic deprotection. 
    more » « less
  3. Abstract Cellulose nanomaterial (CNM) and polyethylenimine (PEI) composites have attracted growing attention due to their multifunctional characteristics, which have been applied in different fields. In this work, soybean hulls were valorized into carboxyl cellulose nanofibrils (COOH-CNFs), and composited into hydrogels with PEI by combining them with cationic chelating and physical adsorption strategies. Cellulose nanofibrils (CNFs) were produced from soybean hulls prior to oxidation by a TEMPO mediated reaction to obtain COOH–CNFs; then drops of zinc chloride were added to 1.5% aqueous COOH–CNF dispersions, which were left for 24 h to form COOH-CNF hydrogels. Finally, the hydrogels were functionalized using different concentration of PEI solutions over a range of pH values. Elemental analysis results showed that 20% aq. PEI at pH 11.6 is the optimum condition to synthesize the COOH–CNF/PEI hydrogels. Additionally, the adsorption efficiency for the removal of anionic methyl blue dyes and Cu(II) ions from water was tested, reaching 82.6% and 69.8%, respectively, after 24 h. These results demonstrate the great potential of COOH–CNF/PEI hydrogels as adsorbent materials for water remediation. Graphical abstract 
    more » « less
  4. Summary Cu+‐chaperones are a diverse group of proteins that allocate Cu+ions to specific copper proteins, creating different copper pools targeted to specific physiological processes.Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required.MtNCC1 is a nodule‐specific Cu+‐chaperone encoded in theMedicago truncatulagenome, with a N‐terminus Atx1‐like domain that can bind Cu+with picomolar affinities. MtNCC1 is able to interact with nodule‐specific Cu+‐importer MtCOPT1.MtNCC1is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation,ncc1mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper‐dependent cytochromecoxidase activity.A subset of the copper proteome is also affected in thencc1mutant nodules. Many of these proteins can be pulled down when using a Cu+‐loaded N‐terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper‐dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation. 
    more » « less
  5. Abstract A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643)R&Ssurfaces. Isotopically labelled 1‐13C‐l‐Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination ofd‐Pro and 1‐13C‐l‐Pro when adsorbed as mixtures. On the Cu(111) surface, X‐ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643)R&Ssurface, adsorbed Pro enantiomers decompose with non‐enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643)R&Ssurfaces to a racemic gas phase mixture ofd‐Pro and 1‐13C‐l‐Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non‐racemic mixtures ofd‐Pro and 1‐13C‐l‐Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co‐adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption ofd‐Pro and 1‐13C‐l‐Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations ofdl‐Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution. 
    more » « less