skip to main content


Search for: All records

Award ID contains: 2113695

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Pairing the electrocatalytic hydrogenation (ECH) reaction with different anodic reactions holds great promise for producing value‐added chemicals driven by renewable energy sources. Replacing the sluggish water oxidation with a bio‐based upgrading reaction can reduce the overall energy cost and allows for the simultaneous generation of high‐value products at both electrodes. Herein, we developed a membrane‐electrode assembly (MEA)‐based electrolysis system for the conversion of 5‐(hydroxymethyl)furfural (HMF) to bis(hydroxymethyl)furan (BHMF) and 2,5‐furandicarboxylic acid (FDCA). With (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO)‐mediated electrochemical oxidation (ECO) of HMF at the anode, the unique zero‐gap configuration enabled a minimal cell voltage of 1.5 V at 10 mA, which was stable during a 24‐hour period of continuous electrolysis, resulting in a combined faradaic efficiency (FE) as high as 139 % to BHMF and FDCA. High FE was also obtained in a pH‐asymmetric mediator‐free configuration, in which the ECO was carried out in 0.1 M KOH with an electrodeposited NiFe oxide catalyst and a bipolar membrane. Taking advantage of the low cell resistance of the MEA‐based system, we also explored ECH of HMF at high current density (280 mA cm−2), in which a FE of 24 % towards BHMF was achieved. The co‐generated H2was supplied into a batch reactor in tandem for the catalytic hydrogenation of furfural or benzaldehyde under ambient conditions, resulting in an additional 7.3 % of indirect FE in a single‐pass operation. The co‐electrolysis of bio‐derived molecules and the tandem electrocatalytic‐catalytic process provide sustainable avenues towards distributed, flexible, and energy‐efficient routes for the synthesis of valuable chemicals.

     
    more » « less
  2. Here, low-energy poly(ethylene terephthalate) (PET) chemical recycling in water: PET copolymers with diethyl 2,5-dihydroxyterephthalate (DHTE) undergo selective hydrolysis at DHTE sites, autocatalyzed by neighboring group participation, is demonstrated. Liberated oligomeric subchains further hydrolyze until only small molecules remain. Poly(ethylene terephthalate-stat-2,5-dihydroxyterephthalate) copolymers were synthesized via melt polycondensation and then hydrolyzed in 150–200 °C water with 0–1 wt% ZnCl2, or alternatively in simulated sea water. Degradation progress follows pseudo-first order kinetics. With increasing DHTE loading, the rate constant increases monotonically while the thermal activation barrier decreases. The depolymerization products are ethylene glycol, terephthalic acid, 2,5-dihydroxyterephthalic acid, and bis(2-hydroxyethyl) terephthalate dimer, which could be used to regenerate virgin polymer. Composition-optimized copolymers show a decrease of nearly 50% in the Arrhenius activation energy, suggesting a 6-order reduction in depolymerization time under ambient conditions compared to that of PET homopolymer. This study provides new insight to the design of polymers for end-of-life while maintaining key properties like service temperature and mechanical properties. Moreover, this chemical recycling procedure is more environmentally friendly compared to traditional approaches since water is the only needed material, which is green, sustainable, and cheap. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Electrocatalytic upgrading of biomass-derived feedstocks driven by renewable electricity offers a greener way to reduce the global carbon footprint associated with the production of value-added chemicals. In this respect, a key strategy is the electrocatalytic hydrogenation (ECH) reaction, which is typically paired with the anodic oxygen evolution reaction (OER) with sluggish kinetics, producing O 2 with little value. Here we prepared an oxide-derived Ag (OD-Ag) electrode with high activity and up to 98.2% selectivity for the ECH of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), and such efficient conversion was achieved in a three-electrode flow cell. The excellent BHMF selectivity was maintained over a broad potential range with long-term operational stability. We then considered the oxidation of HMF to 2,5-furandicarboxylic acid (FDCA) and hydrogen (to water) as more efficient and productive alternatives to the OER. In HMF-to-BHMF paired with 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated HMF-to-FDCA conversion, a markedly reduced cell voltage from ∼7.5 V to ∼2.0 V was observed by transferring the electrolysis from the H-type cell to the flow cell, corresponding to more than four-fold increase in energy efficiency in operation at 10 mA. A combined faradaic efficiency of 163% was obtained for BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ∼0.85 V at 10 mA. These paired processes show the potential for integration of renewable electricity and carbon for green and economically feasible distributed chemical manufacturing. 
    more » « less
  5. null (Ed.)