Abstract In recent years, longer and heavier trains have become more common, primarily driven by efficiency and cost‐saving measures in the railroad industry. Regulation of train length is currently under consideration in the United States at both the federal and state levels, because of concerns that longer trains may have a higher risk of derailment, but the relationship between train length and risk of derailment is not yet well understood. In this study, we use data on freight train accidents during the 2013–2022 period from the Federal Railroad Administration (FRA) Rail Equipment Accident and Highway‐Rail Grade Crossing Accident databases to estimate the relationship between freight train length and the risk of derailment. We determine that longer trains do have a greater risk of derailment. Based on our analysis, running 100‐car trains is associated with 1.11 (95% confidence interval: 1.10–1.12) times the derailment odds of running 50‐car trains (or a 11% increase), even accounting for the fact that only half as many 100‐car trains would need to run. For 200‐car trains, the odds increase by 24% (odds ratio 1.24, 95% confidence interval: 1.20–1.28), again accounting for the need for fewer trains. Understanding derailment risk is an important component for evaluating the overall safety of the rail system and for the future development and regulation of freight rail transportation. Given the limitations of the current data on freight train length, this study provides an important step toward such an understanding. 
                        more » 
                        « less   
                    
                            
                            Transportation of hazardous material via railroad: Incident investigation and a case study of derailment in 2023
                        
                    
    
            Abstract Railway transportation of hazardous materials (HAZMAT) is common and is generally considered safe. However, transporting toxic, flammable, and explosive substances via railways carries significant risk due to their high volume, proximity to populated areas, low public awareness, and potential domino effect. Particularly, the practice has come into question after a Norfolk Southern train derailed in Ohio in February of 2023. This derailment continuously reminds the public and the industry that such incidents can profoundly affect a community, critical infrastructure, and the environment. To identify the root cause of the Ohio train derailment and discover the deficiency of the safety system applied, combining the cause mapping approach with the safety triad concept was employed in this study. Based on this approach and the preliminary incident investigation released by the National Transportation Safety Board, the incident sequence is established, and the causal events leading to this incident are identified in the three essential pillars of its safety system: prevention, mitigation, and response, respectively. The study subsequently develops recommendations to improve the safety system of HAZMAT freight trains. This is expected to lower further the probability and consequence of HAZMAT freight train incidents and ultimately result in long‐term changes in railroad transportation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2149891
- PAR ID:
- 10643831
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Process Safety Progress
- Volume:
- 43
- Issue:
- 3
- ISSN:
- 1066-8527
- Format(s):
- Medium: X Size: p. 570-578
- Size(s):
- p. 570-578
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Complex industrial disasters illustrate the challenges of underdeveloped public warning systems. Unlike most natural disasters, quickly identifying hazardous materials and assessing their threats is crucial for developing protective action recommendations (PARs) that guide household response in industrial crises. The 2023 East Palestine, Ohio (USA) train derailment, chemical spill, and fires revealed that gaps in rapidly identifying hazardous materials, and the threats they present, can severely impact the public warning system. As the crisis unfolded, responding agencies left crucial questions unanswered, leaving community members uncertain about their safety, the extent of environmental contamination, and what protective actions to take. It is imperative to study the drivers of household protective actions in the absence of a developed warning system and well-established PARS. To achieve this, we conducted a community survey in Ohio, Pennsylvania, and West Virginia (n = 259) in response to the East Palestine crisis. We used multivariate logistic regressions to identify statistically significant explanatory factors that predict protective action response. Our findings reveal gaps in response, where challenges identifying and communicating hazards created environmental justice concerns. We provide policy recommendations to strengthen hazard identification and outline further work to include equity as a pillar of environmental disaster response.more » « less
- 
            Inland waterways are critical for freight movement, but limited means exist for monitoring their performance and usage by freight-carrying vessels (e.g., barges). Although methods to track vessels (e.g., tug and tow boats) are publicly available through Automatic Identification System (AIS), ways to track freight tonnages and commodity flows carried on barges along these critical marine highways are nonexistent, especially in real-time settings. This study developed a method to detect barge traffic on inland waterways using existing traffic cameras with opportune viewing angles. Deep learning models You Only Look Once (YOLO), Single Shot MultiBox Detector (SSD), and EfficientDet were employed to detect the presence of vessels/barges from video and classify them (no vessel or barge, vessel without barge, vessel with barge, barge). A dataset of 331 annotated images was collected from five existing traffic cameras along the Mississippi and Ohio Rivers for model development. YOLOv8 achieved an F1-score of 96%, outperforming YOLOv5, SSD, and EfficientDet at 86%, 79%, and 77%, respectively. Sensitivity analysis was carried out for weather conditions (rain, fog) and location (Mississippi and Ohio River). A background subtraction technique normalized the video images across the various locations for the location sensitivity analysis. This model could be used to detect the presence of barges along river segments, which could be used for anonymous bulk commodity tracking and monitoring. Such data are valuable for long-range transportation planning efforts carried out by public transportation agencies, and for operational and maintenance planning conducted by federal agencies such as the U.S. Army Corps of Engineers.more » « less
- 
            The increasing prevalence of hazardous chemical incidents in the United States necessitates the implementation of analytically robust, rapid, and reliable screening techniques for toxicant mixture analysis to understand short- and long-term health impacts of environmental exposures. A recent chemical disaster in East Palestine, Ohio has underscored the importance of thorough contamination assessment. On February 03, 2023, a Norfolk Southern train derailment prompted a chemical spill and fires. An open burn involving over 100,000 gal of vinyl chloride was conducted three days later. Hazardous compounds were released into air, water, and soil. To provide time-sensitive exposure data for emergency response, this study outlines a novel methodology for rapid characterization of chemical contamination of environmental media to support disaster response efforts. A controlled static headspace sampling system, in conjunction with a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS), was developed to characterize volatile organic compounds (VOCs) in surface water samples collected near the East Palestine train derailment site. Spatial variations were observed in the chemical composition of surface water samples collected at different locations. Hydrocarbons were found to be the most abundant chemical group of all surface water samples, contributing 50 % to 97 % to the total headspace VOC mass. Compounds commonly detected in surface water samples, including benzene, styrene, xylene, and methyl tert-butyl ether (MTBE) were also observed in most surface water samples, with aqueous concentrations typically at ng/L levels. This study demonstrated the potential of the proposed methodology to be applied for rapid field screening of volatile chemicals in water samples in order to enable fast emergency response to chemical disasters and environmental hazards.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
