Abstract. Accurate colon segmentation on abdominal CT scans is crucial for various clinical applications. In this work, we propose an accurate AQ1 approach to colon segmentation from abdomen CT scans. Our architecture incorporates 3D contextual information via sequential episodic training (SET). In each episode, we used two consecutive slices, in a CT scan, as support and query samples in addition to other slices that did not include colon regions as negative samples. Choosing consecutive slices is a proper assumption for support and query samples, as the anatomy of the body does not have abrupt changes. Unlike traditional few-shot segmentation (FSS) approaches, we use the episodic training strategy in a supervised manner. In addition, to improve the discriminability of the learned features of the model, an embedding space is developed using contrastive learning. To guide the contrastive learning process, we use AQ2 an initial labeling that is generated by a Markov random field (MRF)- based approach. Finally, in the inference phase, we first detect the rec tum, which can be accurately extracted using the MRF-based approach, and then apply the SET on the remaining slices. Experiments on our private dataset of 98 CT scans and a public dataset of 30 CT scans illustrate that the proposed FSS model achieves a remarkable validation dice coefficient (DC) of 97.3% (Jaccard index, JD 94. 5%) compared to the classical FSS approaches 82.1% (JD 70.3%). Our findings highlight the efficacy of sequential episodic training in accurate 3D medical imaging segmentation. The codes for the proposed models are available at https://github.com/Samir-Farag/ICPR2024.
more »
« less
This content will become publicly available on February 1, 2026
G-SET-DCL: a guided sequential episodic training with dual contrastive learning approach for colon segmentation
Abstract Purpose This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings. Methods The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e., support). Segmentation starts by detecting the rectum using a Markov Random Field-based algorithm. Then, supervised sequential episodic training is applied to the remaining slices, while contrastive learning is employed to enhance feature discriminability, thereby improving segmentation accuracy. Results The proposed method, evaluated on 98 abdominal scans of prepped patients, achieved a Dice coefficient of 97.3% and a polyp information preservation accuracy of 98.28%. Statistical analysis, including 95% confidence intervals, underscores the method’s robustness and reliability. Clinically, this high level of accuracy is vital for ensuring the preservation of critical polyp details, which are essential for accurate automatic diagnostic evaluation. The proposed method performs reliably in scenarios with limited annotated data. This is demonstrated by achieving a Dice coefficient of 97.15% when the model was trained on a smaller number of annotated CT scans (e.g., 10 scans) than the testing dataset (e.g., 88 scans). Conclusions The proposed sequential segmentation approach achieves promising results in colon segmentation. A key strength of the method is its ability to generalize effectively, even with limited annotated datasets—a common challenge in medical imaging.
more »
« less
- Award ID(s):
- 2124316
- PAR ID:
- 10643971
- Publisher / Repository:
- International Journal of Computer Assisted Radiology and Surgery
- Date Published:
- Journal Name:
- International Journal of Computer Assisted Radiology and Surgery
- Volume:
- 20
- Issue:
- 2
- ISSN:
- 1861-6429
- Page Range / eLocation ID:
- 279 to 287
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Early diagnosis of colorectal polyps, before they turn into cancer, is one of the main keys to treatment. In this work, we propose a framework to help radiologists in reading CT scans and identifying candidate CT slices that have polyps. We propose a colorectal polyps detection approach which consists of two cascaded stages. In the first stage, a CNN-based model is trained and validated to detect polyps in axial CT slices. To narrow down the effective receptive field of the detector neurons, the colon regions are segmented and then fed into the network instead of the original CT slice. This drastically improves the detection and localization results, e.g., the mAP is increased by 36%. To reduce the false positives generated by the detector, in the second stage, we propose a multi-view network (MVN) that classifies polyp candidates. The proposed MVN classifier is trained using sagittal and coronal views corresponding to the detected axial views. The approach is tested in 50 CTC-annotated cases, and the experimental results confirm that after the classification stage, polyps can be detected with an AUC about 95.27%.more » « less
-
Objective and Impact Statement . We propose an automated method of predicting Normal Pressure Hydrocephalus (NPH) from CT scans. A deep convolutional network segments regions of interest from the scans. These regions are then combined with MRI information to predict NPH. To our knowledge, this is the first method which automatically predicts NPH from CT scans and incorporates diffusion tractography information for prediction. Introduction . Due to their low cost and high versatility, CT scans are often used in NPH diagnosis. No well-defined and effective protocol currently exists for analysis of CT scans for NPH. Evans’ index, an approximation of the ventricle to brain volume using one 2D image slice, has been proposed but is not robust. The proposed approach is an effective way to quantify regions of interest and offers a computational method for predicting NPH. Methods . We propose a novel method to predict NPH by combining regions of interest segmented from CT scans with connectome data to compute features which capture the impact of enlarged ventricles by excluding fiber tracts passing through these regions. The segmentation and network features are used to train a model for NPH prediction. Results . Our method outperforms the current state-of-the-art by 9 precision points and 29 recall points. Our segmentation model outperforms the current state-of-the-art in segmenting the ventricle, gray-white matter, and subarachnoid space in CT scans. Conclusion . Our experimental results demonstrate that fast and accurate volumetric segmentation of CT brain scans can help improve the NPH diagnosis process, and network properties can increase NPH prediction accuracy.more » « less
-
Among the non-invasive Colorectal cancer (CRC) screening approaches, Computed Tomography Colonography (CTC) and Virtual Colonoscopy (VC), are much more accurate. This work proposes an AI-based polyp detection framework for virtual colonoscopy (VC). Two main steps are addressed in this work: automatic segmentation to isolate the colon region from its background, and automatic polyp detection. Moreover, we evaluate the performance of the proposed framework on low-dose Computed Tomography (CT) scans. We build on our visualization approach, Fly-In (FI), which provides “filet”-like projections of the internal surface of the colon. The performance of the Fly-In approach confirms its ability with helping gastroenterologists, and it holds a great promise for combating CRC. In this work, these 2D projections of FI are fused with the 3D colon representation to generate new synthetic images. The synthetic images are used to train a RetinaNet model to detect polyps. The trained model has a 94% f1-score and 97% sensitivity. Furthermore, we study the effect of dose variation in CT scans on the performance of the the FI approach in polyp visualization. A simulation platform is developed for CTC visualization using FI, for regular CTC and low-dose CTC. This is accomplished using a novel AI restoration algorithm that enhances the Low-Dose CT images so that a 3D colon can be successfully reconstructed and visualized using the FI approach. Three senior board-certified radiologists evaluated the framework for the peak voltages of 30 KV, and the average relative sensitivities of the platform were 92%, whereas the 60 KV peak voltage produced average relative sensitivities of 99.5%.more » « less
-
Traumatic brain injury (TBI) is a massive public health problem worldwide. Accurate and fast automatic brain hematoma segmentation is important for TBI diagnosis, treatment and outcome prediction. In this study, we developed a fully automated system to detect and segment hematoma regions in head Computed Tomography (CT) images of patients with acute TBI. We first over-segmented brain images into superpixels and then extracted statistical and textural features to capture characteristics of superpixels. To overcome the shortage of annotated data, an uncertainty-based active learning strategy was designed to adaptively and iteratively select the most informative unlabeled data to be annotated for training a Support Vector Machine classifier (SVM). Finally, the coarse segmentation from the SVM classifier was incorporated into an active contour model to improve the accuracy of the segmentation. From our experiments, the proposed active learning strategy can achieve a comparable result with 5 times fewer labeled data compared with regular machine learning. Our proposed automatic hematoma segmentation system achieved an average Dice coefficient of 0.60 on our dataset, where patients are from multiple health centers and at multiple levels of injury. Our results show that the proposed method can effectively overcome the challenge of limited and highly varied dataset.more » « less
An official website of the United States government
