skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 2, 2025

Title: Colon Segmentation Using Guided Sequential Episodic Training and Contrastive Learning
Abstract. Accurate colon segmentation on abdominal CT scans is crucial for various clinical applications. In this work, we propose an accurate AQ1 approach to colon segmentation from abdomen CT scans. Our architecture incorporates 3D contextual information via sequential episodic training (SET). In each episode, we used two consecutive slices, in a CT scan, as support and query samples in addition to other slices that did not include colon regions as negative samples. Choosing consecutive slices is a proper assumption for support and query samples, as the anatomy of the body does not have abrupt changes. Unlike traditional few-shot segmentation (FSS) approaches, we use the episodic training strategy in a supervised manner. In addition, to improve the discriminability of the learned features of the model, an embedding space is developed using contrastive learning. To guide the contrastive learning process, we use AQ2 an initial labeling that is generated by a Markov random field (MRF)- based approach. Finally, in the inference phase, we first detect the rec tum, which can be accurately extracted using the MRF-based approach, and then apply the SET on the remaining slices. Experiments on our private dataset of 98 CT scans and a public dataset of 30 CT scans illustrate that the proposed FSS model achieves a remarkable validation dice coefficient (DC) of 97.3% (Jaccard index, JD 94. 5%) compared to the classical FSS approaches 82.1% (JD 70.3%). Our findings highlight the efficacy of sequential episodic training in accurate 3D medical imaging segmentation. The codes for the proposed models are available at https://github.com/Samir-Farag/ICPR2024.  more » « less
Award ID(s):
2124316
PAR ID:
10643976
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature Switzerland
Date Published:
Page Range / eLocation ID:
64 to 79
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Purpose This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings. Methods The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e., support). Segmentation starts by detecting the rectum using a Markov Random Field-based algorithm. Then, supervised sequential episodic training is applied to the remaining slices, while contrastive learning is employed to enhance feature discriminability, thereby improving segmentation accuracy. Results The proposed method, evaluated on 98 abdominal scans of prepped patients, achieved a Dice coefficient of 97.3% and a polyp information preservation accuracy of 98.28%. Statistical analysis, including 95% confidence intervals, underscores the method’s robustness and reliability. Clinically, this high level of accuracy is vital for ensuring the preservation of critical polyp details, which are essential for accurate automatic diagnostic evaluation. The proposed method performs reliably in scenarios with limited annotated data. This is demonstrated by achieving a Dice coefficient of 97.15% when the model was trained on a smaller number of annotated CT scans (e.g., 10 scans) than the testing dataset (e.g., 88 scans). Conclusions The proposed sequential segmentation approach achieves promising results in colon segmentation. A key strength of the method is its ability to generalize effectively, even with limited annotated datasets—a common challenge in medical imaging. 
    more » « less
  2. Among the non-invasive Colorectal cancer (CRC) screening approaches, Computed Tomography Colonography (CTC) and Virtual Colonoscopy (VC), are much more accurate. This work proposes an AI-based polyp detection framework for virtual colonoscopy (VC). Two main steps are addressed in this work: automatic segmentation to isolate the colon region from its background, and automatic polyp detection. Moreover, we evaluate the performance of the proposed framework on low-dose Computed Tomography (CT) scans. We build on our visualization approach, Fly-In (FI), which provides “filet”-like projections of the internal surface of the colon. The performance of the Fly-In approach confirms its ability with helping gastroenterologists, and it holds a great promise for combating CRC. In this work, these 2D projections of FI are fused with the 3D colon representation to generate new synthetic images. The synthetic images are used to train a RetinaNet model to detect polyps. The trained model has a 94% f1-score and 97% sensitivity. Furthermore, we study the effect of dose variation in CT scans on the performance of the the FI approach in polyp visualization. A simulation platform is developed for CTC visualization using FI, for regular CTC and low-dose CTC. This is accomplished using a novel AI restoration algorithm that enhances the Low-Dose CT images so that a 3D colon can be successfully reconstructed and visualized using the FI approach. Three senior board-certified radiologists evaluated the framework for the peak voltages of 30 KV, and the average relative sensitivities of the platform were 92%, whereas the 60 KV peak voltage produced average relative sensitivities of 99.5%. 
    more » « less
  3. Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions.In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches. 
    more » « less
  4. IVC filters (IVCF) perform an important function in select patients that have venous blood clots. However, they are usually intended to be temporary, and significant delay in removal can have negative health consequences for the patient. Currently, all Interventional Radiology (IR) practices are tasked with tracking patients in whom IVCF are placed. Due to their small size and location deep within the abdomen it is common for patients to forget that they have an IVCF. Therefore, there is a significant delay for a new healthcare provider to become aware of the presence of a filter. Patients may have an abdominopelvic CT scan for many reasons and, fortunately, IVCF are clearly visible on these scans. In this research a deep learning model capable of segmenting IVCF from CT scan slices along the axial plane is developed. The model achieved a Dice score of 0.82 for training over 372 CT scan slices. The segmentation model is then integrated with a prediction algorithm capable of flagging an entire CT scan as having IVCF. The prediction algorithm utilizing the segmentation model achieved a 92.22% accuracy at detecting IVCF in the scans. 
    more » « less
  5. null (Ed.)
    Positron emission tomography and computed tomography (PET-CT) dual-modality imaging provides critical diagnostic information in modern cancer diagnosis and therapy. Automated accurate tumor delineation is essentially important in computer-assisted tumor reading and interpretation based on PET-CT. In this paper, we propose a novel approach for the segmentation of lung tumors that combines the powerful fully convolutional networks (FCN) based semantic segmentation framework (3D-UNet) and the graph cut based co-segmentation model. First, two separate deep UNets are trained on PET and CT, separately, to learn high level discriminative features to generate tumor/non-tumor masks and probability maps for PET and CT images. Then, the two probability maps on PET and CT are further simultaneously employed in a graph cut based co-segmentation model to produce the final tumor segmentation results. Comparative experiments on 32 PET-CT scans of lung cancer patients demonstrate the effectiveness of our method. 
    more » « less