skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 11, 2026

Title: Iodinated disinfection byproduct formation from iohexol in sunlit and chlorinated urban wastewaters
Iodinated disinfection by-products (I-DBPs) are of growing concern due to their elevated toxicity compared to their chlorinated counterparts, with links to adverse health effects such as bladder cancer and miscarriages. Medical imaging agents like iohexol, commonly used in healthcare facilities, introduce iodine into wastewater systems. This study investigates the photodegradation of iohexol and the subsequent formation of products, including I-DBPs, during simulated final wastewater treatment under chlorination and sunlight exposure. Experiments were conducted with solutions containing 30 μM iohexol, 3 mg L−1 humic acids, and 5.5 mg L−1 hypochlorite. Samples were irradiated at λ ≥ 295 nm and subject to ion chromatography monitoring of I−, IO3−, Cl−, and ClO3−, providing mechanistic insight into the fate of iodide released from iohexol. UV-visible spectroscopy was employed to monitor the degradation profile of iohexol and the concurrent release of iodide. Electrospray ionization mass spectrometry (ESI-MS) identified a range of anionic products based on their mass-to-charge ratios (m/z), including low molecular weight carboxylic acids, their carcinogenic haloacetic derivatives (chloroacetic acid (m/z 93), iodoacetic acid (IAA, m/z 185), and hydroxyiodoacetic acid (m/z 201)) as well as phenolic halides. Notably, IAA was present at a concentration of 0.16 μM at the conclusion of the reaction. These findings elucidate photodeiodination-coupled radical attack, photooxidative cleavage, and halogenation transformation pathways of iodinated compounds during disinfection and underscore the potential risks associated with their presence in wastewater. The results provide valuable insights for medical facilities and wastewater treatment plants aiming to mitigate the formation of hazardous I-DBPs.  more » « less
Award ID(s):
2403875
PAR ID:
10644012
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Environmental Science: Water Research & Technology
Volume:
11
Issue:
11
ISSN:
2053-1400
Page Range / eLocation ID:
2529 to 2541
Subject(s) / Keyword(s):
Iohexol, I-DBPs, Photodegradation, Chlorination, Wastewater, Oxidation, Mechanism
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gan, Jay; Hopke, Philip; Ouyang, Wei; Paoletti, Elena (Ed.)
    Phenolic aldehydes are widespread pollutants in water and soil, originating from lignin-based agro-industries. With increasing wastewater pollution, improved treatment systems are necessary to degrade phenolic aldehydes into less hazardous compounds. Over the past two decades, ozonolysis wastewater treatment has been implemented in the United States, Japan, and South Korea. However, the mechanistic understanding of phenolic aldehyde ozonolysis in water remains incomplete. This study investigates the ozonolysis of three model phenolic aldehydes (syringaldehyde, vanillin, 4-hydroxybenzaldehyde) in representative concentrations for wastewater of 0.5–1.5 mM and pH 4–8. Each compound solution was sparged for 30 min at a fixed O3(g) flow (0.20 to 1.00 L min−1), providing steady-state dissolved concentrations of 5.4 to 16.2 μM. Reactant loss and product generation were monitored using UV–visible (UV–vis) spectroscopy, ultra-high pressure liquid chromatography (UHPLC) with UV–vis and mass spectrometry (MS) detection, and ion chromatography with conductivity and MS detection of anions. Identified products based on their mass-to-charge ratio (m/z−) included oxalic acid (89), glycolic acid (75), formic acid (45), and maleic acid (115). Additional intermediate products were identified under various reaction conditions, revealing competing mechanisms in the degradative oxidation of aqueous phenolic aldehydes exposed to O3(g). A unifying mechanism is proposed to explain the production of smaller, less toxic molecules during phenolic aldehyde ozonolysis, enhancing water quality. This mechanism serves as a basis for evaluating the implementation of ozonolysis in scaled-up water treatment processes. 
    more » « less
  2. Disinfection is an essential process for both potable water and wastewater treatment plants. However, disinfection byproducts (DBPs) like trihalomethanes (THMs), haloacetonitriles (HANs), and nitrosamines (NOAs) are formed when organic matter precursors react with disinfectants such as chlorine, chloramine, and ozone. Formation of DBPs is strongly associated with the type of water source, type of disinfectant, and organic matter concentration, which can have seasonal variation. In this study, water samples were collected from 20 different intra-watershed locations, which included urban runoff (with and without the influence of unsheltered homeless populations), wastewater effluent discharges, and a large, terminal reservoir that serves as the local drinking water source. Samples were collected on dry and rainy days, which represent seasonal samples. DBP formation potential (FP) tests were conducted at consistent pH, contact time, and temperature. THMs, NOAs, and HANs were analyzed by gas chromatography-mass spectrometry (GC-MS). The FP tests performed on these water samples revealed that chlorine formed the highest THM concentrations, while THM concentrations were low for the ozone FP test as expected. Chloramine produced the greatest HAN concentrations, with dichloroacetonitrile representing the highest concentration. With respect to sample type, more DBPs were formed at the non-wastewater-impacted runoff sites as compared to the wastewater effluent discharge sites. With respect to TOC levels, rain event samples for all locations had higher TOC concentrations compared to dry sampling days. Similarly, rain event samples showed increased DBP formation; a significant amount of precursors for THMs was found in runoff waters that were influenced by wastewater effluent discharges and unsheltered homeless locations (concentration of total THMs for chlorine FP test was >200 μg/L). Therefore, urban runoff waters should be considered as potential sources of DBP precursors to drinking water source waters, and runoff water is prone to seasonal variation. 
    more » « less
  3. Peracetic acid (PAA) is a sanitizer with increasing use in food, medical and water treatment industries. Amino acids are important components in targeted foods for PAA treatment and ubiquitous in natural waterbodies and wastewater effluents as the primary form of dissolved organic nitrogen. To better understand the possible reactions, this work investigated the reaction kinetics and transformation pathways of selected amino acids towards PAA. Experimental results demonstrated that most amino acids showed sluggish reactivity to PAA except cysteine (CYS), methionine (MET), and histidine (HIS). CYS showed the highest reactivity with a very rapid reaction rate. Reactions of MET and HIS with PAA followed second-order kinetics with rate constants of 4.6 ± 0.2, and 1.8 ± 0.1 M−1s−1 at pH 7, respectively. The reactions were faster at pH 5 and 7 than at pH 9 due to PAA speciation. Low concentrations of H2O2 coexistent with PAA contributed little to the oxidation of amino acids. The primary oxidation products of amino acids with PAA were [O] addition compounds on the reactive sites at thiol, thioether and imidazole groups. Theoretical calculations were applied to predict the reactivity and regioselectivity of PAA electrophilic attacks on amino acids and improved mechanistic understanding. As an oxidative disinfectant, the reaction of PAA with organics to form byproducts is inevitable; however, this study shows that PAA exhibits lower and more selective reactivity towards biomolecules such as amino acids than other common disinfectants, causing less concern of toxic disinfection byproducts. This attribute may allow greater stability and more targeted actions of PAA in various applications. 
    more » « less
  4. null (Ed.)
    The photolysis of hypochlorous acid (HOCl) and hypochlorite (OCl − ) produces a suite of reactive oxidants, including hydroxyl radical (˙OH), chlorine radical (Cl˙), and ozone (O 3 ). Therefore, the addition of light to chlorine disinfection units could effectively convert existing drinking water treatment systems into advanced oxidation processes. This review critically examines existing studies on chlorine photolysis as a water treatment process. After describing the fundamental chemistry of chlorine photolysis, we evaluate the ability of chlorine photolysis to transform model probe compounds, target organic contaminants, and chlorine-resistant microorganisms. The efficacy of chlorine photolysis to produce reactive oxidants is dependent on solution and irradiation conditions ( e.g. , pH and irradiation wavelengths). For example, lower pH values result in higher steady-state concentrations of ˙OH and Cl˙, resulting in enhanced contaminant removal. We also present the current state of knowledge on the alteration of dissolved organic matter and subsequent formation of disinfection by-products (DBPs) during chlorine photolysis. Although the relative yields of DBPs during chlorine photolysis are also dependent on solution conditions ( e.g. , higher organic DBP yields at low pH values), there is conflicting evidence on whether chlorine photolysis increases or decreases DBP production compared to thermal reactions between chlorine and dissolved organic matter in the dark. We conclude the review by identifying knowledge gaps in the current body of literature. 
    more » « less
  5. Brominated disinfection byproducts (DBPs) are a concern to drinking water utilities due to their toxicity and increasing prevalence in water systems. Haloacetic acids (HAAs) are a class of DBPs that are partially regulated by the United States Environmental Protection Agency (USEPA), but regulations are likely to increase as evidenced by the brominated HAAs listed on the USEPA Fourth Unregulated Contaminant Monitoring Rule and Fifth Contaminant Candidate List. Utilities often use a pre-oxidant to assist in their treatment training, but this can lead to increased HAA formation during treatment. In this study, tap water was spiked with bromine (Br2) at varying concentrations to simulate bromine-to-chlorine ratios found in the natural environment and the DBPs that may be formed from those waters. The water was fed through a bench-scale biological filter (biofilter) with a small layer of fresh granular activated carbon (GAC) media followed by acclimated anthracite media. The HAA species studied were found to be removable by an average of 89.5% through combined GAC filtration and biofiltration. Biodegradation occurred predominantly in the first five minutes for the acclimated anthracite, with minimal additional removal observed at longer empty bed contact times (15 and 30 min EBCT). This study provides recommendations on biofilter parameters for utilities to reduce the formation of both regulated and unregulated HAAs during the drinking water treatment process. 
    more » « less