skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aphid abundance and monarch butterfly oviposition in urban gardens
Abstract Monarch butterflies (Danaus plexippus) have suffered dramatic declines and, as of 2025, are being considered for listing as a threatened species under the U.S. Endangered Species Act. Monarch declines have been explained, at least in part, by the loss of milkweeds (Asclepiasspp.), their larval host plant. Increasing milkweeds in urban gardens may aid in monarch conservation efforts but concerns have been raised regarding negative interactions between monarchs and aphids co-occurring on milkweeds in these gardens. We made 934 observations on approximately 150Asclepias syriaca(common milkweed) stems in garden beds in a highly urbanized landscape in Chicago, IL, USA over two summers. Using generalized linear mixed-effects models, we found that the number of monarch eggs and larvae was either not correlated or positively correlated with aphid abundance, indicating that aphid infestation did not deter oviposition by monarch butterflies on milkweed stems. Implications for Conservation: Planting milkweeds in urban gardens may aid in monarch population recovery, but aphid milkweed specialists often occur at high densities in urban gardens. We did not find that stems with high aphid abundance had fewer monarch eggs and larvae, suggesting that aphids may not reduce the value of native urban milkweeds for monarch oviposition as previously suggested.  more » « less
Award ID(s):
1928673
PAR ID:
10644039
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Insect Conservation
Volume:
29
Issue:
6
ISSN:
1366-638X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schmidt-Jeffris, Rebecca (Ed.)
    Abstract Invasive black and pale swallow-worts (Vincetoxicum nigrum (L.) Moench, and Vincetoxicum rossicum Kelopow), which are related to milkweeds, can act as ecological traps for monarch butterflies (Danaus plexippus L. (Lepidoptera: Nymphalidae)) as they lay eggs on them that fail to develop. A recently approved biological control agent against swallow-worts, Hypena opulenta Christoph, occupies the same feeding guild on swallow-worts as monarch larvae and could be perceived as a competitor to monarchs. We tested how the presence of this defoliating moth on swallow-worts may influence monarch host selection. In a two-year field experiment, we placed pale swallow-wort plants that were either infested with H. opulenta or noninfested as well as common milkweed (Asclepias syriaca L.), into monarch habitats to assess oviposition rates. In the laboratory, monarchs were either given a choice or not between milkweeds and black swallow-worts with or without H. opulenta. While monarchs strongly preferred common milkweed in the field, up to 25% of the eggs we observed were laid on pale swallow-wort, without preference for swallow-wort with (10.7%) or without (14.3%) H. opulenta. In laboratory choice and no-choice tests, monarchs did not lay any eggs on black swallow-wort, likely because of the long-term laboratory rearing on common milkweeds. Our results confirm that pale swallow-wort may act as an oviposition sink to monarchs in Michigan as well. Since the biological control program is still in its infancy, the nature of interactions between monarchs and H. opulenta may change as the biocontrol agent becomes more widespread. 
    more » « less
  2. null (Ed.)
    Background Oviposition decisions are critical to the fitness of herbivorous insects and are often impacted by the availability and condition of host plants. Monarch butterflies ( Danaus plexippus ) rely on milkweeds ( Asclepias spp.) for egg-laying and as food for larvae. Previous work has shown that monarchs prefer to oviposit on recently regrown plant tissues (after removal of above-ground biomass) while larvae grow poorly on plants previously damaged by insects. We hypothesized that these effects may depend on the life-history strategy of plants, as clonal and non-clonal milkweed species differ in resource allocation and defense strategies. Methodology/Principal Findings We first confirmed butterfly preference for regrown tissue in a field survey of paired mowed and unmowed plots of the common milkweed A. syriaca . We then experimentally studied the effects of plant damage (comparing undamaged controls to plants clipped and regrown, or damaged by insects) on oviposition choice, larval performance, and leaf quality of two closely related clonal and non-clonal species pairs: (1) A. syriaca and A. tuberosa , and (2) A. verticillata and A. incarnata . Clonal and non-clonal species displayed different responses to plant damage, impacting the proportions of eggs laid on plants. Clonal species had similar mean proportions of eggs on regrown and control plants (≈35–40% each), but fewer on insect-damaged plants (≈20%). Meanwhile non-clonal species had similar oviposition on insect-damaged and control plants (20–30% each) but more eggs on regrown plants (40–60%). Trait analyses showed reduced defenses in regrown plants and we found some evidence, although variable, for negative effects of insect damage on subsequent larval performance. Conclusions/Significance Overall, non-clonal species are more susceptible and preferred by monarch butterflies following clipping, while clonal species show tolerance to clipping and induced defense to insect herbivory. These results have implications for monarch conservation strategies that involve milkweed habitat management by mowing. More generally, plant life-history may mediate growth and defense strategies, explaining species-level variation in responses to different types of damage. 
    more » « less
  3. Abstract Arbuscular mycorrhizal (AM) fungi are root symbionts that can facilitate plant growth and influence plant communities by altering plant interactions with herbivores. Therefore, AM fungi could be critical for the conservation of certain rare plants and herbivores. For example, North American milkweed species are crucial hosts for monarch butterflies (Danaus plexippus). Understanding how mycorrhizal composition affects milkweeds will have direct impacts on the conservation and restoration of both increasingly threatened guilds. We present data from three studies on the effect of AM fungal composition on milkweed growth, latex production, and establishment. First, we grew seven milkweed species with and without a mixture of native mycorrhizal fungi. We assessed how important fungal composition is to milkweed growth and latex production by growing four milkweed species with seven fungal compositions, as single‐species inoculations with four native fungi, a mixture of native fungi, a single commercial fungus of presumably non‐native origin, and noninoculated controls. Finally, we assessed the field establishment of two milkweed species with and without native mycorrhizal inoculation. Milkweed species grew 98% larger and produced 82% more latex after inoculation with native mycorrhizae. Milkweeds were strongly affected by fungal composition; milkweeds were inhibited by commercial fungi (average of −14% growth) and showed variable but positive responses to native fungal species (average of +3% to +38% biomass). Finally, we found that restoration establishment was dependent on inoculation with native fungi and milkweed species. Overall, our findings indicate that some milkweed species (i.e.,Asclepias syriacaandA. incarnata) are not responsive to mycorrhizal fungal presence or sensitive to mycorrhizal composition while others are, including endangered species (A. meadii) and species of high conservation value (A. tuberosa). We conclude that the reintroduction of native AM fungi could improve the establishment of desirable milkweed species and should be considered within strategies for plantings for monarch conservation. 
    more » « less
  4. Abstract Animals derive resources from their diet and allocate them to organismal functions such as growth, maintenance, reproduction, and dispersal. How variation in diet quality can affect resource allocation to life-history traits, in particular those important to locomotion and dispersal, is poorly understood. We hypothesize that, particularly for specialist herbivore insects that are in co-evolutionary arms races with host plants, changes in host plant will impact performance. From their coevolutionary arms-race with plants, to a complex migratory life history, Monarch butterflies are among the most iconic insect species worldwide. Population declines initiated international conservation efforts involving the replanting of a variety of milkweed species. However, this practice was implemented with little regard for how diverse defensive chemistry of milkweeds experienced by monarch larvae may affect adult fitness traits. We report that adult flight muscle investment, flight energetics, and maintenance costs depend on the host plant species of larvae, and correlate with concentration of milkweed-derived cardenolides sequestered by adults. Our findings indicate host plant species can impact monarchs by affecting fuel requirements for flight. 
    more » « less
  5. Neonicotinoids are the most widely used insecticides in North America. Numerous studies document the negative effects of neonicotinoids on bees, and it remains crucial to demonstrate if neonicotinoids affect other non-target insects, such as butterflies. Here we examine how two neonicotinoids (imidacloprid and clothianidin) affect the development, survival, and flight of monarch butterflies, and how these chemicals interact with the monarch’s milkweed host plant. We first fed caterpillars field-relevant low doses (0.075 and 0.225 ng/g) of neonicotinoids applied to milkweed leaves (Asclepias incarnata), and found no significant reductions in larval development rate, pre-adult survival, or adult flight performance. We next fed larvae higher neonicotinoid doses (4–70 ng/g) and reared them on milkweed species known to produce low, moderate, or high levels of secondary toxins (cardenolides). Monarchs exposed to the highest dose of clothianidin (51–70 ng/g) experienced pupal deformity, low survival to eclosion, smaller body size, and weaker adult grip strength. This effect was most evident for monarchs reared on the lowest cardenolide milkweed (A. incarnata), whereas monarchs reared on the high-cardenolide A. curassavica showed no significant reductions in any variable measured. Our results indicate that monarchs are tolerant to low doses of neonicotinoid, and that negative impacts of neonicotinoids depend on host plant type. Plant toxins may confer protective effects or leaf physical properties may affect chemical retention. Although neonicotinoid residues are ubiquitous on milkweeds in agricultural and ornamental settings, commonly encountered doses below 50 ng/g are unlikely to cause substantial declines in monarch survival or migratory performance. 
    more » « less