Abstract Vadose zone soil moisture is often considered a pivotal intermediary water reservoir between surface and groundwater in semi-arid regions. Understanding its dynamics in response to changes in meteorologic forcing patterns is essential to enhance the climate resiliency of our ecological and agricultural system. However, the inability to observe high-resolution vadose zone soil moisture dynamics over large spatiotemporal scales hinders quantitative characterization. Here, utilizing pre-existing fiber-optic cables as seismic sensors, we demonstrate a fiber-optic seismic sensing principle to robustly capture vadose zone soil moisture dynamics. Our observations in Ridgecrest, California reveal sub-seasonal precipitation replenishments and a prolonged drought in the vadose zone, consistent with a zero-dimensional hydrological model. Our results suggest a significant water loss of 0.25 m/year through evapotranspiration at our field side, validated by nearby eddy-covariance based measurements. Yet, detailed discrepancies between our observations and modeling highlight the necessity for complementary in-situ validations. Given the escalated regional drought risk under climate change, our findings underscore the promise of fiber-optic seismic sensing to facilitate water resource management in semi-arid regions.
more »
« less
This content will become publicly available on July 1, 2026
Emerging issues and research opportunities in vadose zone processes
Abstract The vadose zone—the variably saturated, near‐surface environment that is critical for ecosystem services such as food and water provisioning, climate regulation, and infrastructure support—faces increasing pressures from both anthropogenic and natural factors, including changing climatic conditions. A more comprehensive understanding of vadose zone processes and interactions is imperative to effectively address these challenges and safeguard water and soil resources. This review outlines selected key issues, knowledge gaps, and research opportunities across six thematic sections. Each section presents a problem statement, a summary of recent innovations, and a compilation of emerging challenges and study opportunities. The selected topics include scaling and modeling of vadose zone properties and processes, soil moisture monitoring initiatives, surface energy balance, interplay between preferential water flow paths and biogeochemical processes, interactions between fires and vadose zone dynamics, and emerging contaminants and their fate in the vadose zone. This overview is intended to serve as a compendium of vadose zone science that encompasses both insights gained from prior research and anticipated needs for the coming years.
more »
« less
- Award ID(s):
- 2037504
- PAR ID:
- 10644084
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Vadose Zone Journal
- Date Published:
- Journal Name:
- Vadose Zone Journal
- Volume:
- 24
- Issue:
- 4
- ISSN:
- 1539-1663
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Machine learning (ML) has been broadly applied for vadose zone applications in recent years. This article provides a comprehensive review of such developments. ML applications for variables corresponding to different complex vadose zone processes are summarized mostly in a prediction context. By analyzing and assessing these applications, we discovered extensive usages of classic ML models with relatively limited applications of deep learning (DL) approaches in general. We also recognized a lack of benchmark datasets for soil property research as well as limited integration of physics‐based vadose zone principles into the ML approaches. To facilitate this interdisciplinary research of ML in vadose zone characterization and processes, a paradigm of knowledge‐guided machine learning is suggested along with other data‐driven and ML model‐based research suggestions to advance future research.more » « less
-
Abstract The self‐potential (SP) method has been used in hydrological sciences to monitor many hydrologic processes thanks to the electrokinetic coupling between water flow and streaming current in geological materials. Despite many useful applications, quantitative interpretations are still rare, in particular for unsaturated soils where the water fluxes are of orders lower than that in saturated conditions. In this study, we used laboratory soil column tests to simulate vadose zone hydrologic processes (drainage, evaporation, and transpiration) and to generate SP data in low water flow conditions. The measured water fluxes and SP signals in different hydrologic stages of the tests are used to study if electrokinetic coupling is still the dominant mechanism for the SP signals in unsaturated, low‐flow conditions. Theoretical models of electrokinetic and electrodiffusion couplings are also used to guide the analysis. It is shown that the SP signals measured during soil evaporation and plant transpiration in this soil column test were not only caused by unsaturated water flows in the soil column through electrokinetic coupling. Instead, they are likely related to the ion concentration gradient in the soil column, which creates an electrical current of a diffusive nature. The ion concentration gradient is likely related to the different reaction rates of mineral–water interactions in saturated and unsaturated soils. This study, therefore, highlighted the importance of considering the electrodiffusion coupling in interpreting the measured SP signals in vadose zone hydrology.more » « less
-
Abstract Warming across the western United States continues to reduce snowpack, lengthen growing seasons, and increase atmospheric demand, leading to uncertainty about moisture availability in montane forests. As many upland forests have thin soils and extensive rooting into weathered bedrock, deep vadose‐zone water may be a critical late‐season water source for vegetation and mitigate forest water stress. A key impediment to understanding the role of the deep vadose zone as a reservoir is quantifying the plant‐available water held there. We quantify the spatiotemporal dynamics of rock moisture held in the deep vadose zone in a montane catchment of the Rocky Mountains. Direct measurements of rock moisture were accompanied by monitoring of precipitation, transpiration, soil moisture, leaf‐water potentials, and groundwater. Using repeat nuclear magnetic resonance and neutron‐probe measurements, we found depletion of rock moisture among all our monitored plots. The magnitude of growing season depletion in rock moisture mirrored above‐ground vegetation density and transpiration, and depleted rock moisture was from ∼0.3 to 5 m below ground surface. Estimates of storage indicated weathered rock stored at least 4%–12% of mean annual precipitation. Persistent transpiration and discrepancies between estimated soil matric potentials and leaf‐water potentials suggest rock moisture may mitigate drought stress. These findings provide some of the first measurements of rock moisture use in the Rocky Mountains and indicated rock moisture use is not just confined to periods of drought or Mediterranean climates.more » « less
-
Abstract Per‐ and poly‐fluoroalkyl substances (PFAS) are interfacially‐active contaminants that adsorb at air‐water interfaces (AWIs). Water‐unsaturated soils have abundant AWIs, which generally consist of two types: one is associated with the pendular rings of water between soil grains (i.e., bulk AWI) and the other arises from the thin water films covering the soil grains. To date, the two types of AWIs have been treated the same when modeling PFAS retention in vadose zones. However, the presence of electrical double layers of soil grain surfaces and the subsequently modified chemical potential of PFAS at the AWI may significantly change the PFAS adsorption at the thin‐water‐film AWI relative to that at the bulk AWI. Given that thin water films contribute to over 90% of AWIs in the vadose zone under many field‐relevant wetting conditions, it is critical to quantify the potential anomalous adsorption of PFAS at the thin‐water‐film AWI. We develop a thermodynamic‐based mathematical model to quantify this anomalous adsorption. The model couples the chemical equilibrium of PFAS with the Poisson‐Boltzmann equation that governs the distribution of electrical potential in a thin water film. Our model analyses suggest that PFAS adsorption at thin‐water‐film AWI can deviate significantly (up to 82%) from that at bulk AWIs. The deviation increases for lower porewater ionic strength, thinner water film, and higher soil grain surface charge. These results highlight the importance of accounting for the anomalous adsorption of PFAS at the thin‐water‐film AWI when modeling PFAS fate and transport in the vadose zone.more » « less
An official website of the United States government
