Microbial communities play a fundamental role in biogeochemical cycling within salt and brackish marsh ecosystems, yet fungal‐prokaryotic interactions in these environments remain poorly understood. This study employed metabarcoding of the 16S and 28S rRNA genes to investigate prokaryotic and fungal communities across four locations in sediments and surface waters of the North Inlet salt marsh and Winyah Bay brackish marsh (South Carolina, USA) over four time points from 2020 to 2021. Co‐occurrence network analyses were used to identify potential microbial interactions and their ecological implications. Distinct fungal and prokaryotic communities were observed between the two marsh types. From the 16S prokaryotic primer set, Proteobacteria, Bacteroidota, and Cyanobacteriota dominated both marshes. Early diverging fungi and Actinomycetota (bacteria) were prevalent in the brackish marsh, whereas salt marsh communities were primarily composed of Dikarya fungi (Ascomycota and Basidiomycota) and Desulfobacteria. Network analyses revealed contrasting interactions between surface water and sediment. In brackish marsh sediments, fungi and prokaryotes exhibited nearly exclusively negative connections, suggesting strong resource competition. In contrast, Dikarya fungi in brackish marsh surface water displayed numerous positive connections with bacteria, suggesting potential cross‐feeding interactions. In the salt marsh, fungi and prokaryotes exhibited potential cooperative and competitive/antagonistic interactions. Ascomycota were positively connected with Desulfobacteria, suggesting a role in complex organic matter degradation. Conversely, negative connections between Chytridiomycota (early diverging fungi) and Cyanobacteriota (bacteria) implied parasitic interactions. These findings highlight the dynamic nature of fungal‐prokaryotic interactions in coastal ecosystems. By analyzing potential microbial relationships in salt and brackish marshes, this study provides new insights into the ecological roles of fungi in estuarine environments, particularly their contributions to nutrient cycling and organic matter decomposition. Understanding these interactions is crucial for generating hypotheses and predicting microbial responses to environmental changes—such as shifts in salinity and nutrient availability—and their potential impacts on marsh ecosystem functioning.
more »
« less
Beyond dikarya: 28S metabarcoding uncovers cryptic fungal lineages across a tidal estuary
Fungi are key drivers of biogeochemical processes, yet marine fungi remain understudied and under-characterized due to primer biases and database gaps. In this study, we conducted a metabarcoding survey targeting the small and large subunit rRNA genes and the internal transcribed spacer region of fungi (18S, 28S, and ITS2) in the sediment and surface water of salt and brackish marshes in the North Inlet—Winyah Bay estuarine system (Georgetown, South Carolina, USA). The universal 18S/16S primer set (515F-Y and 926R) identified few fungal taxa. The ITS2 primer set (ITS3mix and ITS4) revealed high diversity among Dikarya but failed to capture the full extent of early diverging fungi (EDF). In contrast, the 28S primer set (LR0R and LF402) excelled at identifying EDF lineages, including Chytridiomycota, Mucoromycota, Zoopagomycota, and Blastocladiomycota, many of which dominated the brackish marsh sampling site but were less prevalent in the salt marsh sampling sites. Over half of the fungal OTUs identified by the 28S primer set were from EDF lineages. Copy-normalized 28S qPCR showed that EDF were more abundant in brackish sediments than in the salt marsh. Several putative denitrifying fungi, primarily species from Trichoderma and Purpureocillium, were also detected, suggesting overlooked functional guilds that may contribute to estuarine nitrogen cycling. A FUNGuild analysis found that most lineages were saprotrophic. Overall, our findings show that EDF are key contributors to community differences across salinity gradients and may play more important functional roles in coastal biogeochemistry than is currently understood. The 28S primer set is ideal for marine fungal metabarcoding because it provides comprehensive taxonomic coverage and enables phylogenetic analysis.
more »
« less
- Award ID(s):
- 2303089
- PAR ID:
- 10644125
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Environmental Microbiome
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 2524-6372
- Page Range / eLocation ID:
- 129
- Subject(s) / Keyword(s):
- Marine fungi Metabarcoding Salt marsh Brackish marsh Early diverging fungi Dikarya
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Fungi in terrestrial environments are known to play a key role in carbon and nitrogen biogeochemistry and exhibit high diversity. In contrast, the diversity and function of fungi in the ocean has remained underexplored and largely neglected. In the eastern tropical North Pacific oxygen minimum zone, we examined the fungal diversity by sequencing the internal transcribed spacer region 2 (ITS2) and mining a metagenome dataset collected from the same region. Additionally, we coupled 15N-tracer experiments with a selective inhibition method to determine the potential contribution of marine fungi to nitrous oxide (N2O) production. Fungal communities evaluated by ITS2 sequencing were dominated by the phyla Basidiomycota and Ascomycota at most depths. However, the metagenome dataset showed that about one third of the fungal community belong to early-diverging phyla. Fungal N2O production rates peaked at the oxic–anoxic interface of the water column, and when integrated from the oxycline to the top of the anoxic depths, fungi accounted for 18–22% of total N2O production. Our findings highlight the limitation of ITS-based methods typically used to investigate terrestrial fungal diversity and indicate that fungi may play an active role in marine nitrogen cycling.more » « less
-
Biodiversity monitoring based on DNA metabarcoding depends on primer performance. Here, we develop a new metabarcoding primer pair that targets a ~ 318 bp fragment of the 28S rRNA gene. We validate the primer pair in assessing sponges, a notoriously challenging group for coral reef metabarcoding studies, by using mock and natural complex reef communities to examine its performance in species detection, amplification efficiency, and quantitative potential. Mock community experiments revealed a high number of sponge species (n = 94) spanning a broad taxonomic scope (15 orders), limited taxon-specific primer biases (only a single species exceeded a two-fold deviation from the expected number of reads), and its suitability for quantitative metabarcoding – there was a significant relationship between read abundance and visual percent coverage of sponge taxa (R = 0.76). In the natural complex coral reef community experiments, commonly used COI metabarcoding primers detected only 30.9% of sponge species, while the new 28S primer increased detection to 79.4%. These new 28S primers detect a broader taxonomic array of species across phyla and classes within the complex cryptobiome of coral reef communities than the Leray-Geller COI primers. As biodiversity assessments using metabarcoding tools are increasingly being leveraged for environmental monitoring and guide policymaking, these new 28S rRNA primers can improve biodiversity assessments for complex ecological coral reef communities.more » « less
-
Abstract BackgroundThe mass mortality of the long-spined sea urchin Diadema antillarum has caused widespread ecological changes across Caribbean reefs, with recent studies identifying the etiological agent as pathogenic ciliate designated as a D. antillarum Scuticociliatosis Philaster-clade (DaScPc). The origin and ecological trajectory of DaScPc remain unresolved, raising critical questions about whether it represents a novel introduction or a resident commensal symbiont that transitioned into pathogenicity. MethodsTo address this, we tested 50 individual preserved museum specimens of D. antillarum collected between 1960 and 2020, with targeted PCR amplification of ciliate 18S, 28S, and 5.8S/ITS rRNA genes for spine, body wall, and coelomic fluid samples (n=100). Following up on recent work that identified bacterial biomarkers of DaSc, we also characterized the microbial communities associated with these museum specimens using 16S rRNA amplicon sequencing. Results. Our results reveal the presence of identical DaScPc 18S rRNA sequences in 21% of tested samples, 28S rRNA PCR yielded sequences at 96-98 % nt identity in only 2% of the tested samples, and we got no amplification from the 5.8S/ITS region. While these findings suggest possible long-term persistence or repeated emergence of this ciliate, the lack of 28S rRNA matches and lack of detection of ITS2 demonstrates that DaScPc 18S rRNA gene detections may be false positives for the ciliate over a highly conserved rRNA region. The microbial composition of the samples didn’t yield any of the previously identified disease-associated bacterial biomarkers and showed large shifts in the overall microbial community based on collection period and the facility where the samples are housed. This study demonstrates that museum-preserved echinoderm tissues retain ecologically informative microbial DNA and establishes a molecular framework for disentangling pathogen provenance and its caveats. It also highlights the value and limitations of natural history collections in reconstructing marine disease ecology.more » « less
-
Abstract Over heterogeneous landscapes, organisms and energy move across ecological boundaries and this can have profound effects on overall ecosystem functioning. Both abiotic and biotic factors along habitat boundaries may facilitate or impede key species interactions that drive these energy flows—especially along the land–sea interface. We synthesized the literature detailing estuarine fish diets and habitat characteristics of salt marshes from U.S. East and Gulf coasts to determine patterns and drivers of cross‐boundary trophic transfers at the land–sea interface. Notably, marsh‐platform species (i.e., killifishes, fiddler crabs) appear virtually absent in the diets of transient estuarine fishes in the Gulf of Mexico, while along the South Atlantic and Mid‐Atlantic Bights, marsh‐platform species appear regularly in the diets of many transient estuarine fishes. Tidal amplitude varied across these three biogeographic regions and likely regulates the availability of marsh‐platform species to transient estuarine fishes via both access to the marsh surface for marine predators and emergence of marsh‐resident prey into the adjacent estuary (i.e., higher tidal amplitude increases predator–prey encounter rates). Surprisingly, marsh shoot density was positively correlated with the presence of marsh‐platform species in the diet, but this pattern appears to be mediated by increased tidal amplitude, suggesting the mode and periodicity of abiotic cycles drive diet structure of transient estuarine fishes more so than local habitat structural complexity. Subsequently, these processes likely influence the degree to which “trophic relay” moves energy from the marsh toward the open estuary. Understanding the dynamics that determine energy flows, spatial subsidies, and ultimately, ecosystem‐level productivity, is essential for implementation of holistic ecosystem‐based approaches to conserve and manage complex landscape mosaics.more » « less
An official website of the United States government

