skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Floer Homology Beyond Borders
Bordered Floer homology is an invariant for 3-manifolds with boundary, defined by the authors in 2008. It extends the Heegaard Floer homology of closed 3-manifolds, defined in earlier work of Zoltán Szabó and the second author. In addition to its conceptual interest, bordered Floer homology also provides powerful computational tools. This survey outlines the theory, focusing on recent developments and applications.  more » « less
Award ID(s):
2110143
PAR ID:
10644207
Author(s) / Creator(s):
; ;
Editor(s):
Gross, David; Yao, Andrew Chi-Chih; Yau, Shing-Tung
Publisher / Repository:
International Press
Date Published:
Volume:
1
ISBN:
9781571464323
Page Range / eLocation ID:
535-555
Format(s):
Medium: X
Location:
Proceedings of the International Conference of Basic Science 2023
Sponsoring Org:
National Science Foundation
More Like this
  1. We give a bordered extension of involutive HF-hat and use it to give an algorithm to compute involutive HF-hat for general 3-manifolds. We also explain how the mapping class group action on HF-hat can be computed using bordered Floer homology. As applications, we prove that involutive HF-hat satisfies a surgery exact triangle and compute HFI-hat of the branched double covers of all 10-crossing knots. 
    more » « less
  2. Abstract We introduce a contact invariant in the bordered sutured Heegaard Floer homology of a three-manifold with boundary. The input for the invariant is a contact manifold $$(M, \xi , \mathcal {F})$$ whose convex boundary is equipped with a signed singular foliation $$\mathcal {F}$$ closely related to the characteristic foliation. Such a manifold admits a family of foliated open book decompositions classified by a Giroux correspondence, as described in [LV20]. We use a special class of foliated open books to construct admissible bordered sutured Heegaard diagrams and identify well-defined classes $$c_D$$ and $$c_A$$ in the corresponding bordered sutured modules. Foliated open books exhibit user-friendly gluing behavior, and we show that the pairing on invariants induced by gluing compatible foliated open books recovers the Heegaard Floer contact invariant for closed contact manifolds. We also consider a natural map associated to forgetting the foliation $$\mathcal {F}$$ in favor of the dividing set and show that it maps the bordered sutured invariant to the contact invariant of a sutured manifold defined by Honda–Kazez–Matić. 
    more » « less
  3. null (Ed.)
    Abstract We show that the integer homology sphere obtained by splicing two nontrivial knot complements in integer homology sphere L-spaces has Heegaard Floer homology of rank strictly greater than one. In particular, splicing the complements of nontrivial knots in the 3-sphere never produces an L-space. The proof uses bordered Floer homology. 
    more » « less
  4. Auroux, Denis; Biran, Paul; Donaldson, Simon; Mrowka, Tomasz (Ed.)
    We describe a weighted A-infinity algebra associated to the torus. We give a combinatorial construction of this algebra, and an abstract characterization. The abstract characterization also gives a relationship between our algebra and the wrapped Fukaya category of the torus. These algebras underpin the (unspecialized) bordered Heegaard Floer homology for three-manifolds with torus boundary, which will be constructed in forthcoming work. 
    more » « less
  5. We show that all versions of Heegaard Floer homology, link Floer homology, and sutured Floer homology are natural. That is, they assign concrete groups to each based 3-manifold, based link, and balanced sutured manifold, respectively. Furthermore, we functorially assign isomorphisms to (based) diffeomorphisms, and show that this assignment is isotopy invariant. The proof relies on finding a simple generating set for the fundamental group of the “space of Heegaard diagrams,” and then showing that Heegaard Floer homology has no monodromy around these generators. In fact, this allows us to give sufficient conditions for an arbitrary invariant of multi-pointed Heegaard diagrams to descend to a natural invariant of 3-manifolds, links, or sutured manifolds. 
    more » « less